Surface representations using blossoms and buds

Shape representations using polynomials in computer-aided geometric design (CAGD) and computer graphics are ubiquitous. This paper shows that any bivariate polynomial p(t,u) of total degree d les n can be represented in the form of a blossom of another bivariate polynomial b(t, u) of total degree d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2008 IEEE International Conference on Shape Modeling and Applications S. 139 - 145
1. Verfasser: Yohanes, S.L.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2008
Schlagworte:
ISBN:9781424422609, 1424422604
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Shape representations using polynomials in computer-aided geometric design (CAGD) and computer graphics are ubiquitous. This paper shows that any bivariate polynomial p(t,u) of total degree d les n can be represented in the form of a blossom of another bivariate polynomial b(t, u) of total degree d evaluated off the diagonal at the linear function pairs (Xj(t),Yj(u)), j = 1,... ,n, chosen under some conditions expressed in terms of symmetric functions. The bivariate polynomial b(t,u) is called a bud of the bivariate polynomial p(t,u). An algorithm for finding a bud b(t,u) of a given bivariate polynomial p(t,u) is presented. Successively, a bud of b(t, u) can be computed and so on, to form a sequence of representations. The information represented by the original bivariate polynomial is preserved in its buds. This scheme can be used for encoding/decoding geometric design information. The objects in the encoding/decoding sequence can be rendered graphically and manipulated geometrically like the usual parametric representations. Examples concerning triangular Bezier patches are provided as illustrations.
AbstractList Shape representations using polynomials in computer-aided geometric design (CAGD) and computer graphics are ubiquitous. This paper shows that any bivariate polynomial p(t,u) of total degree d les n can be represented in the form of a blossom of another bivariate polynomial b(t, u) of total degree d evaluated off the diagonal at the linear function pairs (Xj(t),Yj(u)), j = 1,... ,n, chosen under some conditions expressed in terms of symmetric functions. The bivariate polynomial b(t,u) is called a bud of the bivariate polynomial p(t,u). An algorithm for finding a bud b(t,u) of a given bivariate polynomial p(t,u) is presented. Successively, a bud of b(t, u) can be computed and so on, to form a sequence of representations. The information represented by the original bivariate polynomial is preserved in its buds. This scheme can be used for encoding/decoding geometric design information. The objects in the encoding/decoding sequence can be rendered graphically and manipulated geometrically like the usual parametric representations. Examples concerning triangular Bezier patches are provided as illustrations.
Author Yohanes, S.L.
Author_xml – sequence: 1
  givenname: S.L.
  surname: Yohanes
  fullname: Yohanes, S.L.
  organization: Fac. of Comput. Sci., Univ. of Indonesia, Depok
BookMark eNpVj01LAzEURSNa0NbZC27mD8z05TtZStFaqLiorkveJJGRNlOSmYX_XsVuvJvLgcuBOydXaUiBkDsKLaVgl7uXTcsATCuk0FbBBamsNlQwIRhTVF3-Y7AzMv-dW6BW6WtSlfIJPxGSM61vyHI35ei6UOdwyqGENLqxH1Kpp9KnjxoPQynDsdQu-RonX27JLLpDCdW5F-T96fFt9dxsX9eb1cO26amWY4PRRxQAmnOvvbEoPGMSo-EYtHbYUQ4SLQvWCN3FqFx03lMmpUCDyvMFuf_z9iGE_Sn3R5e_9ufP_BsnZ0m0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SMI.2008.4547960
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424422616
1424422612
EndPage 145
ExternalDocumentID 4547960
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-bfdfb400733d7d89b4d225bf83be77abc1305b92e9847cff6afadd12554b8b6d3
IEDL.DBID RIE
ISBN 9781424422609
1424422604
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257312200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:11:17 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008901967
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-bfdfb400733d7d89b4d225bf83be77abc1305b92e9847cff6afadd12554b8b6d3
PageCount 7
ParticipantIDs ieee_primary_4547960
PublicationCentury 2000
PublicationDate 2008-June
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-June
PublicationDecade 2000
PublicationTitle 2008 IEEE International Conference on Shape Modeling and Applications
PublicationTitleAbbrev SMI
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453277
Score 1.3985201
Snippet Shape representations using polynomials in computer-aided geometric design (CAGD) and computer graphics are ubiquitous. This paper shows that any bivariate...
SourceID ieee
SourceType Publisher
StartPage 139
SubjectTerms algorithm
Algorithm design and analysis
and Object Representations
bivariate polynomial
blossom of a bivariate polynomial
bud of a bivariate polynomial
Computer applications
Computer graphics
Computer science
Decoding
Encoding
encoding-decoding
geometric design
Hierarchy and Geometric Transformations
I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms-Algebraic Algorithms
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Curve
J.6 [Computer Applications]: Computer-Aided Engineering-Computer-Aided Design (CAD)
Pervasive computing
Polynomials
Rendering (computer graphics)
sequence of representations
Shape
shape representation
Solid
Surface
surface representation
triangular Bézier patch
Title Surface representations using blossoms and buds
URI https://ieeexplore.ieee.org/document/4547960
WOSCitedRecordID wos000257312200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3a4sFT1Vb8Zg8ejY3JNpM9i0VBS6EqvZXslxQ0laTx9zu7SSqCF2_ZkIRdls17O_vmDcAlOs-rmIfBWKRxwGnvFqRaUzMyGRI_x8hrc14fcTpNFwsx68DVNhfGGOPFZ-baXfqzfL1WlQuVjZz5FDHuLnQRsc7V2sZTiJrEEWKbu0WsIuStpVPTFu0xZShG86eHWkjZfPNXcRWPLZP-_3q1B8OfJD0228LPPnRMfgD9tkoDaxbtAEbzqrAZPez9K9tco7xkTvL-xuQ7weT6o2RZrpmsdDmEl8nd8-190JRJCFaE_ZtAWm0l99UXNepUSK5pkUqbxtIgZlIRTI2liIwgJFLWJpmlnxoRmzGXqUx0fAi9fJ2bI2DUmZDeiBOlNKe9o7CKZxaJ1ankJtHhMQzc-JeftRPGshn6yd-3T2G3Vle4mMUZ9DZFZc5hR31tVmVx4afvG4Q5l0k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3MKejT1E38Ng8-Wte1adM8i7LhNgabsrfRfMlAO1lXf783aTsRfPGtKW1JCOk5uTn3XIBbZj2vQup7EU9Cj-LezUuUwmagU4b8nAVOm_M6ZONxMp_zSQPutrkwWmsnPtP39tKd5auVLGyorGvNp5Bx78BuRGnQK7O1thEVJCdhwFidvYW8wqe1qVPV5vVBpc-709GglFJWX_1VXsWhy1Prf_06hM5Pmh6ZbAHoCBo6O4ZWXaeBVMu2Dd1psTYpPuwcLOtsoywnVvT-RsQ7AuXqIydppogoVN6Bl6fH2UPfqwoleEtE_40njDKCuvqLiqmEC6pwmQqThEIzlgqJQBUJHmiOWCSNiVODvzWkNhEViYhVeALNbJXpUyDYGR_fCGMpFcXdIzeSpoYhr5NxL1b-GbTt-BefpRfGohr6-d-3b2C_PxsNF8PB-PkCDkqthY1gXEJzsy70FezJr80yX1-7qfwGlmiakA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+International+Conference+on+Shape+Modeling+and+Applications&rft.atitle=Surface+representations+using+blossoms+and+buds&rft.au=Yohanes%2C+S.L.&rft.date=2008-06-01&rft.pub=IEEE&rft.isbn=9781424422609&rft.spage=139&rft.epage=145&rft_id=info:doi/10.1109%2FSMI.2008.4547960&rft.externalDocID=4547960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424422609/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424422609/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424422609/sc.gif&client=summon&freeimage=true