Efficient secure similarity computation on encrypted trajectory data

Outsourcing database to clouds is a scalable and cost-effective way for large scale data storage, management, and query processing. Trajectory data contain rich spatio-temporal relationships and reveal many forms of individual sensitive information (e.g., home address, health condition), which neces...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2015 IEEE 31st International Conference on Data Engineering s. 66 - 77
Hlavní autori: An Liu, Kai Zhengy, Lu Liz, Guanfeng Liu, Lei Zhao, Xiaofang Zhou
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2015
Predmet:
ISSN:1063-6382
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Outsourcing database to clouds is a scalable and cost-effective way for large scale data storage, management, and query processing. Trajectory data contain rich spatio-temporal relationships and reveal many forms of individual sensitive information (e.g., home address, health condition), which necessitate them to be encrypted before being outsourced for privacy concerns. However, efficient query processing over encrypted trajectory data is a very challenging task. Though some achievements have been reported very recently for simple queries (e.g., SQL queries, kNN queries) on encrypted data, there is rather limited progress on secure evaluation of trajectory queries because they are more complex and need special treatment. In this paper, we focus on secure trajectory similarity computation that is the cornerstone of secure trajectory query processing. More specifically, we propose an efficient solution to securely compute the similarity between two encrypted trajectories, which reveals nothing about the trajectories, but the final result. We theoretically prove that our solution is secure against the semi-honest adversaries model as all the intermediate information in our protocols can be simulated in polynomial time. Finally we empirically study the efficiency of the proposed method, which demonstrates the feasibility of our solution.
AbstractList Outsourcing database to clouds is a scalable and cost-effective way for large scale data storage, management, and query processing. Trajectory data contain rich spatio-temporal relationships and reveal many forms of individual sensitive information (e.g., home address, health condition), which necessitate them to be encrypted before being outsourced for privacy concerns. However, efficient query processing over encrypted trajectory data is a very challenging task. Though some achievements have been reported very recently for simple queries (e.g., SQL queries, kNN queries) on encrypted data, there is rather limited progress on secure evaluation of trajectory queries because they are more complex and need special treatment. In this paper, we focus on secure trajectory similarity computation that is the cornerstone of secure trajectory query processing. More specifically, we propose an efficient solution to securely compute the similarity between two encrypted trajectories, which reveals nothing about the trajectories, but the final result. We theoretically prove that our solution is secure against the semi-honest adversaries model as all the intermediate information in our protocols can be simulated in polynomial time. Finally we empirically study the efficiency of the proposed method, which demonstrates the feasibility of our solution.
Author Guanfeng Liu
Xiaofang Zhou
Kai Zhengy
Lei Zhao
An Liu
Lu Liz
Author_xml – sequence: 1
  surname: An Liu
  fullname: An Liu
  organization: Sch. of Comput. Sci. & Technol., Soochow Univ., Suzhou, China
– sequence: 2
  surname: Kai Zhengy
  fullname: Kai Zhengy
  organization: Sch. of Inf. Technol. & Electr. Eng., Univ. of Queensland, Brisbane, QLD, Australia
– sequence: 3
  surname: Lu Liz
  fullname: Lu Liz
  organization: Sch. of Comput. Sci., Univ. of Sci. & Technol. of China, Hefei, China
– sequence: 4
  surname: Guanfeng Liu
  fullname: Guanfeng Liu
  organization: Sch. of Comput. Sci. & Technol., Soochow Univ., Suzhou, China
– sequence: 5
  surname: Lei Zhao
  fullname: Lei Zhao
  organization: Sch. of Comput. Sci. & Technol., Soochow Univ., Suzhou, China
– sequence: 6
  surname: Xiaofang Zhou
  fullname: Xiaofang Zhou
  organization: Sch. of Inf. Technol. & Electr. Eng., Univ. of Queensland, Brisbane, QLD, Australia
BookMark eNotj8tqwzAQRVVIoUmaDyjd6AfsaixbspfFcdtAoJt2HUbSCBTiB7Ky8N830FwOnN2Bu2GrYRyIsRcQOYBo3g7tvssLAVWuAWSh5QPbQKmbRjeqlCu2BqFkpmRdPLHdPJ_FbU0JUIk123feBxtoSHwme43E59CHC8aQFm7HfromTGEc-A0abFymRI6niGeyaYwLd5jwmT16vMy0u3vLfj-6n_YrO35_Htr3YxZAVykzCipDHtEKTwCm0KScAGmFs-hrKFErjw6dro3CpiotoTJFZURtCyW03LLX_24gotMUQ49xOd1Pyz__TE64
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICDE.2015.7113273
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1479979643
9781479979646
EndPage 77
ExternalDocumentID 7113273
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-b615befaac0fe11b27e6d013c0dcaf814a76fadad78b6a954cea6b25b08c26073
IEDL.DBID RIE
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519724500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6382
IngestDate Wed Aug 27 02:11:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b615befaac0fe11b27e6d013c0dcaf814a76fadad78b6a954cea6b25b08c26073
PageCount 12
ParticipantIDs ieee_primary_7113273
PublicationCentury 2000
PublicationDate 2015-April
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-April
PublicationDecade 2010
PublicationTitle 2015 IEEE 31st International Conference on Data Engineering
PublicationTitleAbbrev ICDE
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000941150
ssj0001967884
Score 2.3168063
Snippet Outsourcing database to clouds is a scalable and cost-effective way for large scale data storage, management, and query processing. Trajectory data contain...
SourceID ieee
SourceType Publisher
StartPage 66
SubjectTerms Encryption
Protocols
Query processing
Trajectory
Title Efficient secure similarity computation on encrypted trajectory data
URI https://ieeexplore.ieee.org/document/7113273
WOSCitedRecordID wos000519724500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na8IwGA4qO-zkNh37JocdF01Nm6RnP9gu4mEDb5KPN9DBVGod-O-XxKoMdhn0EEoTStI0z_PkffMg9Cw0dVIBJ9ZQGQiKJtpZR1zGqOZSMG1oNJsQ06mcz_NZA70cc2EAIAafQS8U416-XZltkMr6ItiiC9ZETSHEPlfrqKd4mhLAzUlfyf1vOBoOe9LDiP_MBvWmZkLz_ttwNA5xXVmvbvOXuUpcWybt_73VBeqekvTw7Lj8XKIGLK9Q--DSgOtJ20GjcTwlwreBN0FcB7wpvgpPaD3-xiY-HkcH-8vXKHdrD0JxVarPKOjvcAgi7aKPyfh9-Epq7wRSeEBQEe2RiganlKEOkkQPBHDr4Z6h1ignk1QJ7pRVVkjNVZ6lBhTXg0xTaTzFEewatZarJdwgzHmeKkiEsVSlOuNS-cpMc0gZMJuZW9QJnbJY74_HWNT9cff37Xt0fpBlqXxArarcwiM6M99VsSmf4pj-APCnoao
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba8IwGP1wbrA9uU3H7svDHldNb0n67AVlTnxw4JvkCg6mUuvAf78kdspgL4M-lNKEkq9tzjn5vhyAZyqwYVyTQEnMHEERgTDKBCaNsSCMxkJibzZBRyM2nWbjCrzsa2G01j75TDfdqV_LV0u5cVJZizpbdBofwXGaJFG4q9baKyqWqDh4c1BYMvsj9pbDlvbEgX3RonJZM8RZa9DudF1mV9ose_1lr-Jnl17tf891Do1DmR4a7yegC6joxSXUfnwaUPnZ1qHT9ftE2D7Q2snrGq3nn3NLaS0CR9Lf7uOD7GFb5NuVhaGoyPmHl_S3yKWRNuC91520-0HpnhDMLSQoAmGxitCGc4mNDkMRUU2UBXwSK8kNCxNOieGKK8oE4VmaSM2JiFKBmbQkh8ZXUF0sF_oaECFZwnVIpcI8ESlh3DaOBdFJrGOVyhuou0GZrXYbZMzK8bj9-_ITnPYnb8PZcDB6vYMzF4NdKsw9VIt8ox_gRH4V83X-6OP7DYmBpOo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+31st+International+Conference+on+Data+Engineering&rft.atitle=Efficient+secure+similarity+computation+on+encrypted+trajectory+data&rft.au=An+Liu&rft.au=Kai+Zhengy&rft.au=Lu+Liz&rft.au=Guanfeng+Liu&rft.date=2015-04-01&rft.pub=IEEE&rft.issn=1063-6382&rft.spage=66&rft.epage=77&rft_id=info:doi/10.1109%2FICDE.2015.7113273&rft.externalDocID=7113273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6382&client=summon