Second order impropriety based complex-valued algorithm for frequency-domain blind separation of convolutive speech mixtures
The performance of the complex-valued blind source separation (BSS) is studied in the frequency domain approach to separate convolutive speech mixtures. In this context, the strong uncorrelating transform (SUT) and complex maximization of non-Gaussianity (CMN) do not produce satisfactory separation...
Uloženo v:
| Vydáno v: | 2011 IEEE International Workshop on Machine Learning for Signal Processing s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2011
|
| Témata: | |
| ISBN: | 1457716216, 9781457716218 |
| ISSN: | 1551-2541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The performance of the complex-valued blind source separation (BSS) is studied in the frequency domain approach to separate convolutive speech mixtures. In this context, the strong uncorrelating transform (SUT) and complex maximization of non-Gaussianity (CMN) do not produce satisfactory separation results since their assumptions about the independence among the frequency-domain complex-valued sources and the different diagonal elements of the pseudo-covariance of those sources are not met at each frequency bin. The proposed strong second order statistics (SSOS) algorithm exploits the second order impropriety of the frequency-domain complex-valued sources with the assumption that the complex-valued sources are improper and uncorrelated, and can well separate the mixtures at about 50% of frequency bins, outperforming SUT and CMN. Thus, it is promising to recover the time-domain speech sources by combing SSOS and the following indeterminacy correction in the frequency domain approach to separate convolutive speech mixtures. |
|---|---|
| AbstractList | The performance of the complex-valued blind source separation (BSS) is studied in the frequency domain approach to separate convolutive speech mixtures. In this context, the strong uncorrelating transform (SUT) and complex maximization of non-Gaussianity (CMN) do not produce satisfactory separation results since their assumptions about the independence among the frequency-domain complex-valued sources and the different diagonal elements of the pseudo-covariance of those sources are not met at each frequency bin. The proposed strong second order statistics (SSOS) algorithm exploits the second order impropriety of the frequency-domain complex-valued sources with the assumption that the complex-valued sources are improper and uncorrelated, and can well separate the mixtures at about 50% of frequency bins, outperforming SUT and CMN. Thus, it is promising to recover the time-domain speech sources by combing SSOS and the following indeterminacy correction in the frequency domain approach to separate convolutive speech mixtures. |
| Author | Qiu-Hua Lin Peng Jia Ristaniemi, T. Fengyu Cong Xizhi Shi |
| Author_xml | – sequence: 1 surname: Fengyu Cong fullname: Fengyu Cong organization: Dept. of Math. Inf. Technol., Univ. of Jyvaskyla, Jyvaskyla, Finland – sequence: 2 surname: Qiu-Hua Lin fullname: Qiu-Hua Lin organization: Sch. of Inf. & Commun. Eng., Dalian Univ. of Technol., Dalian, China – sequence: 3 surname: Peng Jia fullname: Peng Jia organization: NERC for Mobile Satellite Commun., Nanjing, China – sequence: 4 surname: Xizhi Shi fullname: Xizhi Shi organization: Mech. Eng. Sch., Shanghai Jiao Tong Univ., Shanghai, China – sequence: 5 givenname: T. surname: Ristaniemi fullname: Ristaniemi, T. organization: Dept. of Math. Inf. Technol., Univ. of Jyvaskyla, Jyvaskyla, Finland |
| BookMark | eNo1kN1KwzAcxSNOcJt7APEmL9CZNB9NL2X4BROF6fVI2n9cpE1q0o4NfHgLzptzOHD4wTkzNPHBA0LXlCwpJeXty3rztswJpUtJJBeqPEOLslCUi6KgMmf5OZr9ByonaEqFoFkuOL1Es5S-COE5o3SKfjZQBV_jEGuI2LVdDF100B-x0QlqXIW2a-CQ7XUzjFE3nyG6ftdiGyK2Eb4H8NUxq0OrncemcSMrQaej7l3wONiR4PehGXq3B5w6gGqHW3fohwjpCl1Y3SRYnHyOPh7u31dP2fr18Xl1t84cLUSfmZxbooBpRgouixoMV7WqgMtKWsaYUVoVGmxp6tIIa6USFoTJx0o1CmFzdPPHdQCwHfe1Oh63p-fYL46VZmo |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MLSP.2011.6064589 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781457716232 1457716232 1457716224 9781457716225 |
| EndPage | 6 |
| ExternalDocumentID | 6064589 |
| Genre | orig-research |
| GroupedDBID | 29M 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i175t-b24f08e3a307467deb48d8ce46c6f333b8a87aef9bd9b5ff685fe5b28cec28c03 |
| IEDL.DBID | RIE |
| ISBN | 1457716216 9781457716218 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298259900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-2541 |
| IngestDate | Wed Aug 27 02:59:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-b24f08e3a307467deb48d8ce46c6f333b8a87aef9bd9b5ff685fe5b28cec28c03 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6064589 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-Sept. |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2011 IEEE International Workshop on Machine Learning for Signal Processing |
| PublicationTitleAbbrev | MLSP |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0042311 ssj0000669903 |
| Score | 1.806972 |
| Snippet | The performance of the complex-valued blind source separation (BSS) is studied in the frequency domain approach to separate convolutive speech mixtures. In... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | complex-valued BSS convolutive speech Correlation frequency domain improper second order Source separation Speech Time domain analysis Time frequency analysis Vectors |
| Title | Second order impropriety based complex-valued algorithm for frequency-domain blind separation of convolutive speech mixtures |
| URI | https://ieeexplore.ieee.org/document/6064589 |
| WOSCitedRecordID | wos000298259900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6rePDkY1d8k4NH4zbb5tGzKB5UFlTY25I0E7fgtkvbFQV_vEnaXRG8eClJCbRJp5nJzDffIHQxEswCo5YkViUkoZoSCZEgXCkWC9CZgPCl78Xjo5xM0nEPXa5zYQAggM_gyjdDLN-U2dK7yobck6vJdANtCMHbXK21P8WpTrexrndhZyXQliuVUeIOQTQkdTHhCZMoX3E9dX3ZhTtplA4f7p_GLbNn97RfZVeC1rnd-d_77qLBT_oeHq8V0x7qQbGPdlb1G3D3O_fR15M_DRsc6Ddx7t0Li8pjOLHXbQYHuDl8EE8I7rrq7bWs8mY2x87QxbZqQdifxJRzlRdYO4PV4BpaMvGywKXFHtMeZPsdcL0AyGZ4nn_4oEU9QC-3N8_Xd6SrxkByZ2I0RI8SG0mIVRxKlBjQiTQyg4Rn3MZxrKWSQoFNtUk1s5ZLLwV65IZk7hLFB2izKAs4RG4SRvsILQcRJZZxmVEjNGNM-bRgI45Q3y_mdNESbky7dTz--_YJ2m4dvR74dYo2m2oJZ2gre2_yujoPUvINTKe68w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9-gT7NT_w2Dz4abdakSZ9FUZxjsAm-jaS5aMG1o5tjgn-8SVongi--lKQE2qTX3OXud79D6LwtuAVOLWFWMcKopkRCJEiiFI8F6ExA-NId0e3K5-e0t4QuFrkwABDAZ3DpmyGWb8rs3bvKrhJPribTZbTKGWtHdbbWwqPilKfbWhf7sLMTaM2WyilxxyAa0rq48JRJNPlme2r6sgl40ii9euz0ezW3Z_O8X4VXgt65bf3vjTfR7k8CH-4tVNMWWoJiG7W-Kzjg5ofeQZ99fx42OBBw4tw7GMaVR3Fir90MDoBzmBNPCe666u2lrPLp6wg7UxfbqoZhfxBTjlReYO1MVoMnUNOJlwUuLfao9iDdM8CTMUD2ikf53IctJrvo6fZmcH1HmnoMJHdGxpToNrORhFjFoUiJAc2kkRmwJEtsHMdaKikU2FSbVHNrE-nlQLfdkMxdongPrRRlAfvITcJoH6NNQETM8kRm1AjNOVc-MdiIA7TjF3M4rik3hs06Hv59-wyt3w0eO8POfffhCG3Ubl8PAztGK9PqHU7QWjab5pPqNEjMFzMTvjo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+International+Workshop+on+Machine+Learning+for+Signal+Processing&rft.atitle=Second+order+impropriety+based+complex-valued+algorithm+for+frequency-domain+blind+separation+of+convolutive+speech+mixtures&rft.au=Fengyu+Cong&rft.au=Qiu-Hua+Lin&rft.au=Peng+Jia&rft.au=Xizhi+Shi&rft.date=2011-09-01&rft.pub=IEEE&rft.isbn=9781457716218&rft.issn=1551-2541&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP.2011.6064589&rft.externalDocID=6064589 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-2541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-2541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-2541&client=summon |

