Second order impropriety based complex-valued algorithm for frequency-domain blind separation of convolutive speech mixtures
The performance of the complex-valued blind source separation (BSS) is studied in the frequency domain approach to separate convolutive speech mixtures. In this context, the strong uncorrelating transform (SUT) and complex maximization of non-Gaussianity (CMN) do not produce satisfactory separation...
Gespeichert in:
| Veröffentlicht in: | 2011 IEEE International Workshop on Machine Learning for Signal Processing S. 1 - 6 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.09.2011
|
| Schlagworte: | |
| ISBN: | 1457716216, 9781457716218 |
| ISSN: | 1551-2541 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The performance of the complex-valued blind source separation (BSS) is studied in the frequency domain approach to separate convolutive speech mixtures. In this context, the strong uncorrelating transform (SUT) and complex maximization of non-Gaussianity (CMN) do not produce satisfactory separation results since their assumptions about the independence among the frequency-domain complex-valued sources and the different diagonal elements of the pseudo-covariance of those sources are not met at each frequency bin. The proposed strong second order statistics (SSOS) algorithm exploits the second order impropriety of the frequency-domain complex-valued sources with the assumption that the complex-valued sources are improper and uncorrelated, and can well separate the mixtures at about 50% of frequency bins, outperforming SUT and CMN. Thus, it is promising to recover the time-domain speech sources by combing SSOS and the following indeterminacy correction in the frequency domain approach to separate convolutive speech mixtures. |
|---|---|
| AbstractList | The performance of the complex-valued blind source separation (BSS) is studied in the frequency domain approach to separate convolutive speech mixtures. In this context, the strong uncorrelating transform (SUT) and complex maximization of non-Gaussianity (CMN) do not produce satisfactory separation results since their assumptions about the independence among the frequency-domain complex-valued sources and the different diagonal elements of the pseudo-covariance of those sources are not met at each frequency bin. The proposed strong second order statistics (SSOS) algorithm exploits the second order impropriety of the frequency-domain complex-valued sources with the assumption that the complex-valued sources are improper and uncorrelated, and can well separate the mixtures at about 50% of frequency bins, outperforming SUT and CMN. Thus, it is promising to recover the time-domain speech sources by combing SSOS and the following indeterminacy correction in the frequency domain approach to separate convolutive speech mixtures. |
| Author | Qiu-Hua Lin Peng Jia Ristaniemi, T. Fengyu Cong Xizhi Shi |
| Author_xml | – sequence: 1 surname: Fengyu Cong fullname: Fengyu Cong organization: Dept. of Math. Inf. Technol., Univ. of Jyvaskyla, Jyvaskyla, Finland – sequence: 2 surname: Qiu-Hua Lin fullname: Qiu-Hua Lin organization: Sch. of Inf. & Commun. Eng., Dalian Univ. of Technol., Dalian, China – sequence: 3 surname: Peng Jia fullname: Peng Jia organization: NERC for Mobile Satellite Commun., Nanjing, China – sequence: 4 surname: Xizhi Shi fullname: Xizhi Shi organization: Mech. Eng. Sch., Shanghai Jiao Tong Univ., Shanghai, China – sequence: 5 givenname: T. surname: Ristaniemi fullname: Ristaniemi, T. organization: Dept. of Math. Inf. Technol., Univ. of Jyvaskyla, Jyvaskyla, Finland |
| BookMark | eNo1kN1KwzAcxSNOcJt7APEmL9CZNB9NL2X4BROF6fVI2n9cpE1q0o4NfHgLzptzOHD4wTkzNPHBA0LXlCwpJeXty3rztswJpUtJJBeqPEOLslCUi6KgMmf5OZr9ByonaEqFoFkuOL1Es5S-COE5o3SKfjZQBV_jEGuI2LVdDF100B-x0QlqXIW2a-CQ7XUzjFE3nyG6ftdiGyK2Eb4H8NUxq0OrncemcSMrQaej7l3wONiR4PehGXq3B5w6gGqHW3fohwjpCl1Y3SRYnHyOPh7u31dP2fr18Xl1t84cLUSfmZxbooBpRgouixoMV7WqgMtKWsaYUVoVGmxp6tIIa6USFoTJx0o1CmFzdPPHdQCwHfe1Oh63p-fYL46VZmo |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MLSP.2011.6064589 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781457716232 1457716232 1457716224 9781457716225 |
| EndPage | 6 |
| ExternalDocumentID | 6064589 |
| Genre | orig-research |
| GroupedDBID | 29M 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i175t-b24f08e3a307467deb48d8ce46c6f333b8a87aef9bd9b5ff685fe5b28cec28c03 |
| IEDL.DBID | RIE |
| ISBN | 1457716216 9781457716218 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298259900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-2541 |
| IngestDate | Wed Aug 27 02:59:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-b24f08e3a307467deb48d8ce46c6f333b8a87aef9bd9b5ff685fe5b28cec28c03 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6064589 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-Sept. |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2011 IEEE International Workshop on Machine Learning for Signal Processing |
| PublicationTitleAbbrev | MLSP |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0042311 ssj0000669903 |
| Score | 1.807072 |
| Snippet | The performance of the complex-valued blind source separation (BSS) is studied in the frequency domain approach to separate convolutive speech mixtures. In... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | complex-valued BSS convolutive speech Correlation frequency domain improper second order Source separation Speech Time domain analysis Time frequency analysis Vectors |
| Title | Second order impropriety based complex-valued algorithm for frequency-domain blind separation of convolutive speech mixtures |
| URI | https://ieeexplore.ieee.org/document/6064589 |
| WOSCitedRecordID | wos000298259900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8ODJj038JgeP1q1Lk6ZncXiYYzCF3UaavLiCa0fbjQn-8SZpVxG8eClJKaSE5H3-3u8hdGeUHuc24Q6UKi_wJbF3DjzOAl9r2w5JOJ7ZcTiZ8Pk8mrbQfVMLAwAOfAYPduhy-SqTGxsq6zNLrsajNmqHIatqtZp4ilGdRrA2UthYCX7FlUp9zzhBvivqoqElTPLZnuupnvM63ekPov7LeDatmD3r1X61XXFaZ3T0v_89Rr2f8j08bRTTCWpBeoqO9v0bcH2du-hrZr1hhR39Jk5seGGdWwwntrpNYQc3h51nCcHNVHy8Z3lSLlfYGLpY5xUI-9NT2UokKY6NwapwARWZeJbiTGOLaXdnewu4WAPIJV4lO5u0KHrobfT0-vjs1d0YvMSYGKUXDwM94EAEcS1KFMQBV1xCwCTThJCYCx4K0FGsophqzTjVQOOh-USax4CcoU6apXCOMA80KMKMd0xZAIIIqakUUmkjfsCH-AJ17WYu1hXhxqLex8u_X1-hwyrQa4Ff16hT5hu4QQdyWyZFfutOyTf92LrY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zCnqauonf5uDRunVJuvQsjonbGGzCbiNNXlzBtaP7YIJ_vEnaTQQvXkpSCikheZ-_93sI3Rulx7lNuANjyqO-JPbOgccD6mtt2yEJxzPbbfX7fDwOByX0sKuFAQAHPoNHO3S5fJXKlQ2V1QNLrsbDPbTPKG028mqtXUTFKE8jWndy2NgJfs6WynzPuEG-K-tiLUuZ5AdbtqdizouEp98I673ucJBzexbr_Wq84vROu_K_Pz5GtZ8CPjzYqaYTVILkFFW2HRxwcaGr6Gto_WGFHQEnjm2AYZ5ZFCe22k1hBziHjWcpwc1UfLynWbyczrAxdbHOchj2p6fSmYgTHBmTVeEF5HTiaYJTjS2q3Z3uNeDFHEBO8Sze2LTFoobe2s-jp45X9GPwYmNkLL2oSXWDAxHENSlREFGuuAQayEATQiIueEuADiMVRkzrgDMNLGqaT6R5NMgZKidpAucIc6pBkcD4xyygIIiQmkkhlTYCCHyILlDVbuZknlNuTIp9vPz79R067Ix63Un3pf96hY7ysK-FgV2j8jJbwQ06kOtlvMhu3Yn5BuDovh8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+International+Workshop+on+Machine+Learning+for+Signal+Processing&rft.atitle=Second+order+impropriety+based+complex-valued+algorithm+for+frequency-domain+blind+separation+of+convolutive+speech+mixtures&rft.au=Fengyu+Cong&rft.au=Qiu-Hua+Lin&rft.au=Peng+Jia&rft.au=Xizhi+Shi&rft.date=2011-09-01&rft.pub=IEEE&rft.isbn=9781457716218&rft.issn=1551-2541&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP.2011.6064589&rft.externalDocID=6064589 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-2541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-2541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-2541&client=summon |

