Extensions of recurrent neural network language model
We present several modifications of the original recurrent neural net work language model (RNN LM). While this model has been shown to significantly outperform many competitive language modeling techniques in terms of accuracy, the remaining problem is the computational complexity. In this work, we...
Uloženo v:
| Vydáno v: | 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) s. 5528 - 5531 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2011
|
| Témata: | |
| ISBN: | 9781457705380, 1457705389 |
| ISSN: | 1520-6149 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present several modifications of the original recurrent neural net work language model (RNN LM). While this model has been shown to significantly outperform many competitive language modeling techniques in terms of accuracy, the remaining problem is the computational complexity. In this work, we show approaches that lead to more than 15 times speedup for both training and testing phases. Next, we show importance of using a backpropagation through time algorithm. An empirical comparison with feedforward networks is also provided. In the end, we discuss possibilities how to reduce the amount of parameters in the model. The resulting RNN model can thus be smaller, faster both during training and testing, and more accurate than the basic one. |
|---|---|
| AbstractList | We present several modifications of the original recurrent neural net work language model (RNN LM). While this model has been shown to significantly outperform many competitive language modeling techniques in terms of accuracy, the remaining problem is the computational complexity. In this work, we show approaches that lead to more than 15 times speedup for both training and testing phases. Next, we show importance of using a backpropagation through time algorithm. An empirical comparison with feedforward networks is also provided. In the end, we discuss possibilities how to reduce the amount of parameters in the model. The resulting RNN model can thus be smaller, faster both during training and testing, and more accurate than the basic one. |
| Author | Cernocky, Jan Honza Mikolov, Tomas Burget, Lukas Kombrink, Stefan Khudanpur, Sanjeev |
| Author_xml | – sequence: 1 givenname: Tomas surname: Mikolov fullname: Mikolov, Tomas email: imikolov@fit.vutbr.cz organization: Brno Univ. of Technol., Brno, Czech Republic – sequence: 2 givenname: Stefan surname: Kombrink fullname: Kombrink, Stefan email: kombrink@fit.vutbr.cz organization: Brno Univ. of Technol., Brno, Czech Republic – sequence: 3 givenname: Lukas surname: Burget fullname: Burget, Lukas email: burget@fit.vutbr.cz organization: Brno Univ. of Technol., Brno, Czech Republic – sequence: 4 givenname: Jan Honza surname: Cernocky fullname: Cernocky, Jan Honza email: cernocky@fit.vutbr.cz organization: Brno Univ. of Technol., Brno, Czech Republic – sequence: 5 givenname: Sanjeev surname: Khudanpur fullname: Khudanpur, Sanjeev email: khudanpur@jhu.edu organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA |
| BookMark | eNo1j81OwzAQhI0oEm3JE_SSF0jw2l47PqKq_EiVQCqcKztZV4HUQU4q4O2JRJnLN3MZzSzYLPaRGFsBLwG4vX1a3-12L6XgACVaZTTABVuAQmM4SmsuWWZN9Z8rPmNzQMELDcpes2wY3vkkLYxBO2e4-R4pDm0fh7wPeaL6lBLFMY90Sq6bMH716SPvXDyc3IHyY99Qd8OugusGys5csrf7zev6sdg-P0z7tkULBsfCg2zEtNGTd8GSblSlMeDkbRASmrpCHiDUyrtaYq3JyeBReK-8CEaSXLLVX29LRPvP1B5d-tmfX8tfSY5MVg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICASSP.2011.5947611 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1457705397 9781457705373 9781457705397 1457705370 |
| EndPage | 5531 |
| ExternalDocumentID | 5947611 |
| Genre | orig-research |
| GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-b13d2594bebaf9e6d4865f5af99f231dc850f1fc4bac35c6ea3fb52bb4b2f73e3 |
| IEDL.DBID | RIE |
| ISBN | 9781457705380 1457705389 |
| ISICitedReferencesCount | 784 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296062406059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-6149 |
| IngestDate | Wed Aug 27 02:54:03 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-b13d2594bebaf9e6d4865f5af99f231dc850f1fc4bac35c6ea3fb52bb4b2f73e3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_5947611 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-May |
| PublicationDateYYYYMMDD | 2011-05-01 |
| PublicationDate_xml | – month: 05 year: 2011 text: 2011-May |
| PublicationDecade | 2010 |
| PublicationTitle | 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| PublicationTitleAbbrev | ICASSP |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000627759 ssj0008748 |
| Score | 2.4372094 |
| Snippet | We present several modifications of the original recurrent neural net work language model (RNN LM). While this model has been shown to significantly outperform... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 5528 |
| SubjectTerms | Artificial neural networks Backpropagation Computational modeling language modeling Probability distribution Recurrent neural networks speech recognition Training Vocabulary |
| Title | Extensions of recurrent neural network language model |
| URI | https://ieeexplore.ieee.org/document/5947611 |
| WOSCitedRecordID | wos000296062406059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qeNCLj1Z8k4NH1-4j2WyOUlr0UgpV6K1kkgkUpJXaij_fJLutCl48bXYP2UdCJt-3M98HcJty7iwVIskR84R7yJBoQpVgYTHXZJFXGM0m5HBYTSZq1IK7bS0MEcXkM7oPzfgv3y7MOlBlXaG4R90e6-xIWda1Wls-JcjtRum6ZhWuZHTO8uEpwCOuYlGXkNJPukpttJ6a87SRI8pS1X3qPYzHo1rbs7nfL-OVGHcGh_974iPofBfwsdE2NB1Di-YncPBDe7ANov8Zk9f9rGMLx5aBdw9KTSwoXOpXf4j54WxDaLLomdOBl0H_ufeYNB4KycxvDFYJZoX1CIcjoXaKSsurUjjh28r5rZ01lUhd5gxHbQphStKFQ-EHjmPuZEHFKezOF3M6A0aqVCI3mURuPCosK2cUltYqDJ2n-hza4QNM32qZjGnz7hd_X76E_ZqeDbmDV7C7Wq7pGvbMx2r2vryJY_sFk_yfsw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6MKagvXjbxbh98tK6XpG0eZWxsOMdgE_Y2epITGMgqcxN_vknaTQVffGrah_SSkJPv6znfB3AXMKYVxdyPECOfGcjg54TCx1hhlJNClqEzm0iHw2w6FaMa3G9rYYjIJZ_Rg226f_mqkGtLlbW4YAZ1G6yzwxmLgrJaa8uoWMFdJ15XrcNZ6ryzTICyAIkJV9bF09RMu0xs1J6q86ASJAoD0eq3H8fjUanuWd3xl_WKizzdw_898xE0v0v4vNE2OB1DjRYncPBDfbABvPPp0tfNvPMK7S0t8261mjyrcZm_moPLEPc2lKbnXHOa8NLtTNo9v3JR8Odma7DyMYyVwTgMCXMtKFEsS7jmpi202dwpmfFAh1oyzGXMZUJ5rJGboWMY6TSm-BTqi2JBZ-CRSASPZJgikwYXJpmWAhOlBNrOg_wcGvYDzN5KoYxZ9e4Xf1--hb3e5HkwG_SHT5ewX5K1NpPwCuqr5ZquYVd-rObvyxs3zl8Zk6L6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Extensions+of+recurrent+neural+network+language+model&rft.au=Mikolov%2C+Tomas&rft.au=Kombrink%2C+Stefan&rft.au=Burget%2C+Lukas&rft.au=Cernocky%2C+Jan+Honza&rft.date=2011-05-01&rft.pub=IEEE&rft.isbn=9781457705380&rft.issn=1520-6149&rft.spage=5528&rft.epage=5531&rft_id=info:doi/10.1109%2FICASSP.2011.5947611&rft.externalDocID=5947611 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon |

