Extended Pipeline for Content-Based Feature Engineering in Music Genre Recognition

We present a feature engineering pipeline for the construction of musical signal characteristics, to be used for the design of a supervised model for musical genre identification. The key idea is to extend the traditional two-step process of extraction and classification with additive stand-alone ph...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) s. 2661 - 2665
Hlavní autoři: Raissi, Tina, Tibo, Alessandro, Bientinesi, Paolo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2018
Témata:
ISSN:2379-190X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present a feature engineering pipeline for the construction of musical signal characteristics, to be used for the design of a supervised model for musical genre identification. The key idea is to extend the traditional two-step process of extraction and classification with additive stand-alone phases which are no longer organized in a waterfall scheme. The whole system is realized by traversing backtrack arrows and cycles between various stages. In order to give a compact and effective representation of the features, the standard early temporal integration is combined with other selection and extraction phases: on the one hand, the selection of the most meaningful characteristics based on information gain, and on the other hand, the inclusion of the nonlinear correlation between this subset of features, determined by an autoencoder. The results of the experiments conducted on GTZAN dataset reveal a noticeable contribution of this methodology towards the model's performance in classification task.
AbstractList We present a feature engineering pipeline for the construction of musical signal characteristics, to be used for the design of a supervised model for musical genre identification. The key idea is to extend the traditional two-step process of extraction and classification with additive stand-alone phases which are no longer organized in a waterfall scheme. The whole system is realized by traversing backtrack arrows and cycles between various stages. In order to give a compact and effective representation of the features, the standard early temporal integration is combined with other selection and extraction phases: on the one hand, the selection of the most meaningful characteristics based on information gain, and on the other hand, the inclusion of the nonlinear correlation between this subset of features, determined by an autoencoder. The results of the experiments conducted on GTZAN dataset reveal a noticeable contribution of this methodology towards the model's performance in classification task.
Author Tibo, Alessandro
Bientinesi, Paolo
Raissi, Tina
Author_xml – sequence: 1
  givenname: Tina
  surname: Raissi
  fullname: Raissi, Tina
  organization: RWTH Aachen University, AICES, Schinkelstr. 2, Aachen, 52062, Germany
– sequence: 2
  givenname: Alessandro
  surname: Tibo
  fullname: Tibo, Alessandro
  organization: Department of Information Engineering, University of Florence, Via S. Marta 3, Firenze, 50139, Italy
– sequence: 3
  givenname: Paolo
  surname: Bientinesi
  fullname: Bientinesi, Paolo
BookMark eNotkNtKw0AYhFdRsNY8QW_2BRL3fLjUkFahYmkVvCvJ7r9hpW5KkoK-fQP2amC-YRjmHt2kLgFCC0oKSol9fC2fdrtNwQg1hRGKGqKvUGa1oZIbJZQ05hrNGNc2p5Z83aFsGL4JIUwZoaWaoW31O0Ly4PEmHuEQE-DQ9bjs0mSP-XM9TGgJ9XjqAVepnQLQx9TimPDbaYgOryBNaAuua1McY5ce0G2oDwNkF52jz2X1Ub7k6_fVtHedR6rlmDdEEEql8VSSRhodBHDmDXdWKSdkcMyw0EBogqrBUy-Y16qR1mkvrLOCz9HivzcCwP7Yx5-6_9tfXuBnhIVTNw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2018.8461807
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Music
EISBN 9781538646588
1538646587
EISSN 2379-190X
EndPage 2665
ExternalDocumentID 8461807
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-b0401158d150b587f4e32d83c966c45fc282fbefbf6aed1d42d76b59c7d49c943
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446384602165&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:54:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b0401158d150b587f4e32d83c966c45fc282fbefbf6aed1d42d76b59c7d49c943
PageCount 5
ParticipantIDs ieee_primary_8461807
PublicationCentury 2000
PublicationDate 2018-April
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-April
PublicationDecade 2010
PublicationTitle 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
PublicationTitleAbbrev ICASSP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002684756
ssj0008748
Score 2.0965078
Snippet We present a feature engineering pipeline for the construction of musical signal characteristics, to be used for the design of a supervised model for musical...
SourceID ieee
SourceType Publisher
StartPage 2661
SubjectTerms autoencoder
Feature extraction
feature extraction and selection
genre classification
information gain
Mel frequency cepstral coefficient
Music
Musical signal
Pipelines
Task analysis
Training
Title Extended Pipeline for Content-Based Feature Engineering in Music Genre Recognition
URI https://ieeexplore.ieee.org/document/8461807
WOSCitedRecordID wos000446384602165&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0getCLChi_swePLtB2290elYB6IQ1owo10v5JeCoHi73d2qYiJF29Nk842s92dt9N5bwAeEiYRd6eMJoIziivR0DS0lgoW4XYZSdsPc99sgo_HYjZLswY87rgwxhhffGa67tL_y9cLtXGpsh7GykA46vgB58mWq7XLpzjVEq9kXu_COLSoVYaCftp7GzxNp5kr5RLd2syvfio-nIxO__ciZ9D54eWRbBdxzqFhyhac7EkKtuDQN25uw2RYZ7dJViwd59wQhKfEi1GVFX3G4KWJw3-blSF7FkhREm-CvLgvi0y-C4wWZQc-RsP3wSut-yfQAkFBRSUuUAR8QiPok7Hglpko1CJSeMRRLLYKj1tWGittkhsdaBZqnsg4VVyzVKUsuoBmuSjNJRAEfUoZFuTOrzk-yFSMWEZIq6Qb5grazkvz5VYiY1476Prv2zdw7CZiWwBzC81qtTF3cKQ-q2K9uvfz-gVgpKGx
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEL4QMFFfVMD42z74aIFt3dY9KgEhIlkAE97I2rXJXgbB4d_vtUzExBfflia7Nte1993t7juAh4AJxN0RowEPGcWTqGjkak058_C69ITuuIltNhGOx3w-j-IKPO5qYZRSNvlMtcyj_ZefLuXGhMraaCsdbkrHaz5Dv2dbrbWLqBjeEstlXt7DODkveYacTtQedp-m09gkc_FWKehXRxVrUPon_1vKKTR_KvNIvLM5Z1BReR2O90gF61CzrZsbMOmV8W0SZytTda4IAlRi6ajygj6j-UqJQYCbtSJ7EkiWEyuCvJhvi0y-U4yWeRPe-71Zd0DLDgo0Q1hQUIFHFCEfTxH2CZ-HminPTbkn0cmRzNcSHS4tlBY6SFTqpMxNw0D4kQxTFsmIeedQzZe5ugCCsE9KxZzE6DXBF5n0Ec1woaUw01xCw2hpsdqSZCxKBV39PXwPh4PZ22gxGo5fr-HIbMo2HeYGqsV6o27hQH4W2cf6zu7xF_lGpPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Extended+Pipeline+for+Content-Based+Feature+Engineering+in+Music+Genre+Recognition&rft.au=Raissi%2C+Tina&rft.au=Tibo%2C+Alessandro&rft.au=Bientinesi%2C+Paolo&rft.date=2018-04-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=2661&rft.epage=2665&rft_id=info:doi/10.1109%2FICASSP.2018.8461807&rft.externalDocID=8461807