LQ evolution algorithm optimizer for model predictive control at model uncertainty

This paper presents an evolution algorithm as a powerful optimisation technique for tuning Model Based Predictive Control (MBPC) at the implications of different levels of model uncertainties. Although Standard Genetic Algorithms (SGAs) are proven to successfully tune and optimise MBPC parameters wh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2014 14th International Conference on Control, Automation and Systems (ICCAS 2014) s. 1272 - 1277
Hlavní autor: Osman, Haitham
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Institute of Control, Robotics and Systems (ICROS) 01.10.2014
Témata:
ISSN:2093-7121
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents an evolution algorithm as a powerful optimisation technique for tuning Model Based Predictive Control (MBPC) at the implications of different levels of model uncertainties. Although Standard Genetic Algorithms (SGAs) are proven to successfully tune and optimise MBPC parameters when no model mismatch. SGAs are trapped in a local optimum at the price of model uncertainty. The multi-objective evaluation algorithms are capable to incorporate many objective functions that can meet simultaneously robust control design objective functions. These promising techniques are successfully implemented to stabilised MBPC at high model uncertainty.
ISSN:2093-7121
DOI:10.1109/ICCAS.2014.6987752