A New Quadratic Matrix Inequality Approach to Robust Adaptive Beamforming for General-rank Signal Model

The worst-case robust adaptive beamforming problem for generalrank signal model is considered. This is a nonconvex problem, and an approximate version of it (by introducing a matrix decomposition on the presumed covariance matrix of the desired signal) has been studied in the literature. Herein the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 4335 - 4339
Hlavní autoři: Huang, Yongwei, Vorobyov, Sergiy A., Luo, Zhi-Quan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2019
Témata:
ISSN:2379-190X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The worst-case robust adaptive beamforming problem for generalrank signal model is considered. This is a nonconvex problem, and an approximate version of it (by introducing a matrix decomposition on the presumed covariance matrix of the desired signal) has been studied in the literature. Herein the original robust adaptive beamforming problem is tackled. Resorting to the strong duality of a linear conic program, the robust beamforming problem is reformulated into a quadratic matrix inequality (QMI) problem. There is no general method for solving a QMI problem in the literature. Here- in, employing a linear matrix inequality (LMI) relaxation technique, the QMI problem is turned into a convex semidefinite programming problem. Due to the fact that there often is a positive gap between the QMI problem and its LMI relaxation, a deterministic approximate algorithm is proposed to solve the robust adaptive beamforming in the QMI form. Last but not the least, a sufficient optimality condition for the existence of an optimal solution for the QMI problem is derived. To validate our theoretical results, simulation examples are presented, which also demonstrate the improved performance of the new robust beamformer in terms of the output signal-to-interference- plus-noise ratio.
AbstractList The worst-case robust adaptive beamforming problem for generalrank signal model is considered. This is a nonconvex problem, and an approximate version of it (by introducing a matrix decomposition on the presumed covariance matrix of the desired signal) has been studied in the literature. Herein the original robust adaptive beamforming problem is tackled. Resorting to the strong duality of a linear conic program, the robust beamforming problem is reformulated into a quadratic matrix inequality (QMI) problem. There is no general method for solving a QMI problem in the literature. Here- in, employing a linear matrix inequality (LMI) relaxation technique, the QMI problem is turned into a convex semidefinite programming problem. Due to the fact that there often is a positive gap between the QMI problem and its LMI relaxation, a deterministic approximate algorithm is proposed to solve the robust adaptive beamforming in the QMI form. Last but not the least, a sufficient optimality condition for the existence of an optimal solution for the QMI problem is derived. To validate our theoretical results, simulation examples are presented, which also demonstrate the improved performance of the new robust beamformer in terms of the output signal-to-interference- plus-noise ratio.
Author Huang, Yongwei
Luo, Zhi-Quan
Vorobyov, Sergiy A.
Author_xml – sequence: 1
  givenname: Yongwei
  surname: Huang
  fullname: Huang, Yongwei
  email: ywhuang@gdut.edu.cn
  organization: Guangdong Uni. of Technol, University Town, Guangzhou, China
– sequence: 2
  givenname: Sergiy A.
  surname: Vorobyov
  fullname: Vorobyov, Sergiy A.
  email: svor@ieee.org
  organization: Aalto Uni, Konemiehentie, Finland
– sequence: 3
  givenname: Zhi-Quan
  surname: Luo
  fullname: Luo, Zhi-Quan
  email: Luozq@cuhk.edu.cn
  organization: The Chinese Uni. of Hong Kong (SZ) Longgang, Shenzhen, China
BookMark eNotkN1OwjAYQKvRRECegJu-wGa7tmt7OYkiCfiHJt6Rr9s3rI5tdkPl7SWRq3N3knOG5KxuaiRkwlnMObNX82m2Wj3GCeM2NqkRqVQnZGy14VJba7jg_JQMEqFtxC17uyDDrvtgjBktzYBsMnqPP_RpB0WA3ud0CX3wv3Re49cOKt_vada2oYH8nfYNfW7crutpVkDb-2-k1wjbsglbX2_ogXSGNQaoogD1J135TQ0VXTYFVpfkvISqw_GRI_J6e_MyvYsWD7NDwSLyXKs-AmDSJnmSSstlKgVyp0p0RhXK5g5cokoAledWytIIUAoSLHVhCpY4brUTIzL593pEXLfBbyHs18cv4g_Xulpc
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2019.8683645
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781479981311
1479981311
EISSN 2379-190X
EndPage 4339
ExternalDocumentID 8683645
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-aa0492c264914643e1b5feb85d59cbab25faa5cc944f83a55a2ef7d8d02b197b3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482554004114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 06 17:54:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-aa0492c264914643e1b5feb85d59cbab25faa5cc944f83a55a2ef7d8d02b197b3
PageCount 5
ParticipantIDs ieee_primary_8683645
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.087189
Snippet The worst-case robust adaptive beamforming problem for generalrank signal model is considered. This is a nonconvex problem, and an approximate version of it...
SourceID ieee
SourceType Publisher
StartPage 4335
SubjectTerms Adaptation models
Approximation algorithms
Array signal processing
Covariance matrices
deterministic approximate algorithm
general-rank signal model
Linear matrix inequalities
linear matrix inequality relaxation
Matrix decomposition
quadratic matrix inequality problem
Robust adaptive beamforming
Semidefinite programming
Signal processing algorithms
Signal to noise ratio
Speech processing
Title A New Quadratic Matrix Inequality Approach to Robust Adaptive Beamforming for General-rank Signal Model
URI https://ieeexplore.ieee.org/document/8683645
WOSCitedRecordID wos000482554004114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3a4kEvfrTiN3PwaGy6yWY3x1gUe7BUq9Bb2a-WgialTUT_vbtJqApePCUEdgM7y8xLdt57AJe2KNNQc-n5SjpRbcE9ESjpBcTMfKa4IESWZhNsOOSTSTxqwNWGC2OMKZvPzLW7Lc_ydaYK96usyyPuTs2a0GQsqrham6zLWchrVaGeH3cH_WQ8HrnWLbsXqmG__FPK8nG3-78X70Hnm4eHo02F2YeGSQ9g54eEYBvmCdo8hY-F0C6WCh-c5v4HDlJT8SU_MallwzHP8CmTxTrHRIuly3N4Y8Sbg612LrRXrFWoPWfljuPF3G4zdHZprx14ubt97t97tXmCt7CIIPeEsNifKIt3YpsMw8D0JJ0ZyammsZJCEjoTgioVh-GMB4JSYaPDNNc-kb2YyeAQWmmWmiPAOCKGakZCZaey-MzxtBj3pbafJlGo5DG03ZJNl5U-xrRerZO_H5_CtotK1TR4Bq18VZhz2FLv-WK9uiiD-gWZUaQy
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3MKagvfkzx2zz4aF2XJmv6WIdjw21MN2FvI18dA23H1or-e5O2TAVffGopJIXccO9pc885ADemKFOimHBcKayoNmcO96RwPKwj15eMYyxyswl_MGCTSTCswO2aC6O1zpvP9J29zc_yVSIz-6uszprMnpptwCYlBLsFW2udd5lPWKkr1HCDercVjkZD27xldkMx8JeDSl5A2nv_e_U-HH0z8dBwXWMOoKLjQ9j9ISJYg1mITKZCTxlXNpoS9a3q_gfqxrpgTH6isBQOR2mCnhORrVIUKr6wmQ7da_5mgauZC5krKnWoHWvmjkbzmdloyBqmvR7BS_th3Oo4pX2CMzeYIHU4N-gfS4N4ApMOiacbgkZaMKpoIAUXmEacUykDQiLmcUq5iY-vmHKxaAS-8I6hGiexPgEUNLGmysdEmqkMQrNMLZ-5QpmPkyaR4hRqdsmmi0IhY1qu1tnfj69huzPu96a97uDxHHZshIoWwguopstMX8KWfE_nq-VVHuAvUO2neQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=A+New+Quadratic+Matrix+Inequality+Approach+to+Robust+Adaptive+Beamforming+for+General-rank+Signal+Model&rft.au=Huang%2C+Yongwei&rft.au=Vorobyov%2C+Sergiy+A.&rft.au=Luo%2C+Zhi-Quan&rft.date=2019-05-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=4335&rft.epage=4339&rft_id=info:doi/10.1109%2FICASSP.2019.8683645&rft.externalDocID=8683645