Classification of Mental Tasks Using Fixed and Adaptive Autoregressive Models of EEG Signals

Classification of EEG signals extracted during mental tasks is a technique for designing brain computer interfaces (BCI). In this paper, we classify EEG signals that were extracted during mental tasks using fixed autoregressive (FAR) and adaptive AR (AAR) models. Five different mental tasks from 4 s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International IEEE/EMBS Conference on Neural Engineering (Online) s. 633 - 636
Hlavní autoři: Nai-Jen Huan, Palaniappan, R.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2005
Témata:
ISBN:9780780387102, 0780387104
ISSN:1948-3546
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Classification of EEG signals extracted during mental tasks is a technique for designing brain computer interfaces (BCI). In this paper, we classify EEG signals that were extracted during mental tasks using fixed autoregressive (FAR) and adaptive AR (AAR) models. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks are studied for each subject. Four different feature extraction methods were used to extract features from these EEG signals: FAR coefficients computed with Burg's algorithm using 125 data points, without segmentation and with segmentation of 25 data points, AAR coefficients computed with least-mean-square (LMS) algorithm using 125 data points, without segmentation and with segmentation of 25 data points. Multilayer perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm is used to classify these features into the different categories representing the mental tasks. The best results for FAR was 92.70% while for AAR was only 81.80%. The results obtained here indicated that FAR using 125 data points without segmentation gave better classification performance as compared to AAR, with all other parameters constant
AbstractList Classification of EEG signals extracted during mental tasks is a technique for designing brain computer interfaces (BCI). In this paper, we classify EEG signals that were extracted during mental tasks using fixed autoregressive (FAR) and adaptive AR (AAR) models. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks are studied for each subject. Four different feature extraction methods were used to extract features from these EEG signals: FAR coefficients computed with Burg's algorithm using 125 data points, without segmentation and with segmentation of 25 data points, AAR coefficients computed with least-mean-square (LMS) algorithm using 125 data points, without segmentation and with segmentation of 25 data points. Multilayer perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm is used to classify these features into the different categories representing the mental tasks. The best results for FAR was 92.70% while for AAR was only 81.80%. The results obtained here indicated that FAR using 125 data points without segmentation gave better classification performance as compared to AAR, with all other parameters constant
Author Palaniappan, R.
Nai-Jen Huan
Author_xml – sequence: 1
  surname: Nai-Jen Huan
  fullname: Nai-Jen Huan
  organization: Fac. of Inf. Sci. & Technol., Multimedia Univ., Melaka
– sequence: 2
  givenname: R.
  surname: Palaniappan
  fullname: Palaniappan, R.
BookMark eNotkEFLw0AUhBesYK29C172DyS-t5t0N8cQ0iq0erC9CWWTfQmrcVOyUfTfG7Ew8DEwM4e5ZjPfe2LsFiFGhOy-eCpjAZDGmGCmILlgy0xpmCS1QhAzNscs0ZFMk9UVW4bwBgBSwJTWc_ZadCYE17jajK73vG_4jvxoOr434T3wQ3C-5Wv3TZYbb3luzWl0X8Tzz7EfqB1oak9211vqwl-9LDf8xbXedOGGXTYTaHnmgh3W5b54iLbPm8ci30YOVTpGRlmoG2016MbKjGxdKYtQpbUxkBghbZXIOrWKGrRaVAqUFCshEY1EVa3kgt397zoiOp4G92GGn-P5D_kLButVdQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CNE.2005.1419704
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 636
ExternalDocumentID 1419704
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-a7d0cf8d808fd39edcb7d10b5caa04a23db43c5d7ef1d82b7073262311a317b63
IEDL.DBID RIE
ISBN 9780780387102
0780387104
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000229610400169&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1948-3546
IngestDate Wed Aug 27 02:15:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a7d0cf8d808fd39edcb7d10b5caa04a23db43c5d7ef1d82b7073262311a317b63
PageCount 4
ParticipantIDs ieee_primary_1419704
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle International IEEE/EMBS Conference on Neural Engineering (Online)
PublicationTitleAbbrev CNE
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204198
Score 1.4329288
Snippet Classification of EEG signals extracted during mental tasks is a technique for designing brain computer interfaces (BCI). In this paper, we classify EEG...
SourceID ieee
SourceType Publisher
StartPage 633
SubjectTerms Backpropagation algorithms
Brain computer interfaces
Brain modeling
Data mining
Electroencephalography
Feature extraction
Least squares approximation
Multilayer perceptrons
Neural networks
Signal design
Title Classification of Mental Tasks Using Fixed and Adaptive Autoregressive Models of EEG Signals
URI https://ieeexplore.ieee.org/document/1419704
WOSCitedRecordID wos000229610400169&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5zePCksonf5ODRuqRJl_Q4RqenMXDCDsLIxxspSjf2If58k7SbCF68NS0p5U3bvF_P8yB0J_wqK0qdf3mJSXjGIFGcByAwYUJb6l1YEsUmxHgsZ7N80kL3eywMAMTmM3gIh7GWbxdmG1JlPcr93ED-eSBEv8Zq7fMpLCX-akS-5VwmLOP9GKXLUJ_1MUdDtrMbp7uSJcl7w3FRJ1ea-_8SWon7zOj4f094gro_gD082W9Fp6gFVQe9RsHL0AoUrY8XDteMPXiq1u9rHLsF8Kj8AotVZfHAqmX4-eFB4DWAGIiHYZBL-1iH6UXxiJ_Lt0C53EUvo2I6fEoaMYWk9B7CJlHCEuOklUQ6y3KwRgtLic6MUoSrlFnNmcmsAEetTLXw337qfSNKlXcxdJ-doXa1qOAcYemtzxR1zkngBjLv8lgdIktCNVCuL1AnWGa-rPky5o1RLv8-fYWOIh1qTGtco_ZmtYUbdGg-N-V6dRsX-RuLUaEw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5jCnpS2cRvc_BoXdKkS3oco3PiLAMn7CCMpEmkKN1YN_Hnm6TdRPDirWkILW--nvfreQG4YXaWBcbGLl6UBTQiOhCUukRgRJhU2EJY5ItNsDTl02k8boDbbS6M1toHn-k79-h9-WqerZ2prIOpHevIP3ciSkNUZWttLSokRLbf577FlAckol2vp3PnobVaR023s2mHG6clijv9NKnMK_UXfpVa8TfN4OB__3gI2j8pe3C8vYyOQEMXLfDqS166YCAvfzg3sOLsgRNRvpfQxwvAQf6lFRSFgj0lFu74gz3HbKC9Ku6armDaR-mGJ8k9fM7fHOlyG7wMkkl_GNTlFILcYoRVIJhCmeGKI24UibXKJFMYySgTAlEREiUpySLFtMGKh5LZ3R9adISxsCBDdskxaBbzQp8AyJk9lgQ2xnBNMx1Z0KOk0y0RlhpTeQpaTjKzRcWYMauFcvb362uwN5w8jWajh_TxHOx7clRv5LgAzdVyrS_Bbva5ysvllZ_wbyKhpHc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+IEEE%2FEMBS+Conference+on+Neural+Engineering+%28Online%29&rft.atitle=Classification+of+Mental+Tasks+Using+Fixed+and+Adaptive+Autoregressive+Models+of+EEG+Signals&rft.au=Nai-Jen+Huan&rft.au=Palaniappan%2C+R.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780780387102&rft.issn=1948-3546&rft.spage=633&rft.epage=636&rft_id=info:doi/10.1109%2FCNE.2005.1419704&rft.externalDocID=1419704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-3546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-3546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-3546&client=summon