Classification of Mental Tasks Using Fixed and Adaptive Autoregressive Models of EEG Signals
Classification of EEG signals extracted during mental tasks is a technique for designing brain computer interfaces (BCI). In this paper, we classify EEG signals that were extracted during mental tasks using fixed autoregressive (FAR) and adaptive AR (AAR) models. Five different mental tasks from 4 s...
Uloženo v:
| Vydáno v: | International IEEE/EMBS Conference on Neural Engineering (Online) s. 633 - 636 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2005
|
| Témata: | |
| ISBN: | 9780780387102, 0780387104 |
| ISSN: | 1948-3546 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Classification of EEG signals extracted during mental tasks is a technique for designing brain computer interfaces (BCI). In this paper, we classify EEG signals that were extracted during mental tasks using fixed autoregressive (FAR) and adaptive AR (AAR) models. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks are studied for each subject. Four different feature extraction methods were used to extract features from these EEG signals: FAR coefficients computed with Burg's algorithm using 125 data points, without segmentation and with segmentation of 25 data points, AAR coefficients computed with least-mean-square (LMS) algorithm using 125 data points, without segmentation and with segmentation of 25 data points. Multilayer perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm is used to classify these features into the different categories representing the mental tasks. The best results for FAR was 92.70% while for AAR was only 81.80%. The results obtained here indicated that FAR using 125 data points without segmentation gave better classification performance as compared to AAR, with all other parameters constant |
|---|---|
| AbstractList | Classification of EEG signals extracted during mental tasks is a technique for designing brain computer interfaces (BCI). In this paper, we classify EEG signals that were extracted during mental tasks using fixed autoregressive (FAR) and adaptive AR (AAR) models. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks are studied for each subject. Four different feature extraction methods were used to extract features from these EEG signals: FAR coefficients computed with Burg's algorithm using 125 data points, without segmentation and with segmentation of 25 data points, AAR coefficients computed with least-mean-square (LMS) algorithm using 125 data points, without segmentation and with segmentation of 25 data points. Multilayer perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm is used to classify these features into the different categories representing the mental tasks. The best results for FAR was 92.70% while for AAR was only 81.80%. The results obtained here indicated that FAR using 125 data points without segmentation gave better classification performance as compared to AAR, with all other parameters constant |
| Author | Palaniappan, R. Nai-Jen Huan |
| Author_xml | – sequence: 1 surname: Nai-Jen Huan fullname: Nai-Jen Huan organization: Fac. of Inf. Sci. & Technol., Multimedia Univ., Melaka – sequence: 2 givenname: R. surname: Palaniappan fullname: Palaniappan, R. |
| BookMark | eNotkEFLw0AUhBesYK29C172DyS-t5t0N8cQ0iq0erC9CWWTfQmrcVOyUfTfG7Ew8DEwM4e5ZjPfe2LsFiFGhOy-eCpjAZDGmGCmILlgy0xpmCS1QhAzNscs0ZFMk9UVW4bwBgBSwJTWc_ZadCYE17jajK73vG_4jvxoOr434T3wQ3C-5Wv3TZYbb3luzWl0X8Tzz7EfqB1oak9211vqwl-9LDf8xbXedOGGXTYTaHnmgh3W5b54iLbPm8ci30YOVTpGRlmoG2016MbKjGxdKYtQpbUxkBghbZXIOrWKGrRaVAqUFCshEY1EVa3kgt397zoiOp4G92GGn-P5D_kLButVdQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CNE.2005.1419704 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) - NZ IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 636 |
| ExternalDocumentID | 1419704 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-a7d0cf8d808fd39edcb7d10b5caa04a23db43c5d7ef1d82b7073262311a317b63 |
| IEDL.DBID | RIE |
| ISBN | 9780780387102 0780387104 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000229610400169&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1948-3546 |
| IngestDate | Wed Aug 27 02:15:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-a7d0cf8d808fd39edcb7d10b5caa04a23db43c5d7ef1d82b7073262311a317b63 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_1419704 |
| PublicationCentury | 2000 |
| PublicationDate | 20050000 |
| PublicationDateYYYYMMDD | 2005-01-01 |
| PublicationDate_xml | – year: 2005 text: 20050000 |
| PublicationDecade | 2000 |
| PublicationTitle | International IEEE/EMBS Conference on Neural Engineering (Online) |
| PublicationTitleAbbrev | CNE |
| PublicationYear | 2005 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003204198 |
| Score | 1.4329288 |
| Snippet | Classification of EEG signals extracted during mental tasks is a technique for designing brain computer interfaces (BCI). In this paper, we classify EEG... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 633 |
| SubjectTerms | Backpropagation algorithms Brain computer interfaces Brain modeling Data mining Electroencephalography Feature extraction Least squares approximation Multilayer perceptrons Neural networks Signal design |
| Title | Classification of Mental Tasks Using Fixed and Adaptive Autoregressive Models of EEG Signals |
| URI | https://ieeexplore.ieee.org/document/1419704 |
| WOSCitedRecordID | wos000229610400169&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zePCksonf5ODRuLZJm_Q4RqcHGQOn7CCMJC-RoXRj3cQ_3yTtJoIXb00hj_BCkvf5-yF0Y3SaKEUtyUycEgaUEWmNJSClTQVkEQscSy-PfDQS02k-bqHbXS-MMSYUn5k7_xly-bDQGx8q68VuIvfgn3ucZ3Wv1i6eQhMvNnS-5UwQmrIseOnC52edz9GA7WzHyTZlGeW9waiogyuN_F9EK-GdGR7-b4VHqPvTsIfHu6foGLVM2UGvgfDSlwIF7eOFxTViD57I6r3CoVoAD-dfBrAsAfdBLv3lh_se18AER9wPPV3aR-WnF8U9fpq_ecjlLnoeFpPBA2nIFMjcWQhrIjlE2goQkbBAcwNacYgjlWopIyYTCopRnQI3NgaRKO7OfuJsoziWzsRQGT1B7XJRmlOEIVE2d4aEYtIyyY3SOuNax9q6TXdiz1DHa2a2rPEyZo1Szv_-fYEOAhxqCGtcovZ6tTFXaF9_rufV6jps8jf-p6Q6 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA5DBT2pbOLbHDwa16Zpkx7H6Jw4y8ApOwgjTylKN9ZN_PNN0m0iePGWBPLgF9r8nt8HwLWWMRYiMijRYYyIigjiRhukODcxU0lAPMfSy4DmORuP02ED3GxqYbTWPvlM37qmj-WrqVw6V1k7tBOpA__cjgnBQV2ttfGoRNgt7GvfUsJQFJPE2-nMRWit1bGC21n38TpoGaTtbp7V7pXVDr-oVvxL09v_3xkPQOunZA8ON4_RIWjosglePeWlSwby8odTA2vMHjji1XsFfb4A7BVfWkFeKthRfOZ-f7DjkA20N8Vd1xGmfVRuepbdwafizYEut8BzLxt1-2hFp4AKqyMsEKcqkIYpFjCjolQrKagKAxFLzgPCcaQEiWSsqDahYlhQ-_Vjqx2FIbdKhkiiI7BVTkt9DKDCwqRWlRCEG8KpFlImVMpQGnvtdtkT0HSSmcxqxIzJSiinfw9fgd3-6HEwGdznD2dgz4OjeifHOdhazJf6AuzIz0VRzS_9hX8DvfengQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+IEEE%2FEMBS+Conference+on+Neural+Engineering+%28Online%29&rft.atitle=Classification+of+Mental+Tasks+Using+Fixed+and+Adaptive+Autoregressive+Models+of+EEG+Signals&rft.au=Nai-Jen+Huan&rft.au=Palaniappan%2C+R.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780780387102&rft.issn=1948-3546&rft.spage=633&rft.epage=636&rft_id=info:doi/10.1109%2FCNE.2005.1419704&rft.externalDocID=1419704 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-3546&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-3546&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-3546&client=summon |

