An Effective Deep Learning Based Scheme for Network Intrusion Detection

Intrusion detection systems (IDS) play an important role in the protection of network operations and services. In this paper, we propose an effective network intrusion detection scheme based on deep learning techniques. The proposed scheme employs a denoising autoencoder (DAE) with a weighted loss f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 24th International Conference on Pattern Recognition (ICPR) s. 682 - 687
Hlavní autoři: Zhang, Hongpo, Wu, Chase Q., Gao, Shan, Wang, Zongmin, Xu, Yuxiao, Liu, Yongpeng
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2018
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Intrusion detection systems (IDS) play an important role in the protection of network operations and services. In this paper, we propose an effective network intrusion detection scheme based on deep learning techniques. The proposed scheme employs a denoising autoencoder (DAE) with a weighted loss function for feature selection, which determines a limited number of important features for intrusion detection to reduce feature dimensionality. The selected data is then classified by a compact multilayer perceptron (MLP) for intrusion identification. Extensive experiments are conducted on the UNSW-NB dataset to demonstrate the effectiveness of the proposed scheme. With a small feature selection ratio of 5.9%, the proposed scheme is still able to achieve a superior performance in terms of different evaluation criteria. The strategic selection of a reduced set of features yields satisfactory detection performance with low memory and computing power requirements, making the proposed scheme a promising solution to intrusion detection in high-speed networks.
DOI:10.1109/ICPR.2018.8546162