An Effective Deep Learning Based Scheme for Network Intrusion Detection

Intrusion detection systems (IDS) play an important role in the protection of network operations and services. In this paper, we propose an effective network intrusion detection scheme based on deep learning techniques. The proposed scheme employs a denoising autoencoder (DAE) with a weighted loss f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2018 24th International Conference on Pattern Recognition (ICPR) S. 682 - 687
Hauptverfasser: Zhang, Hongpo, Wu, Chase Q., Gao, Shan, Wang, Zongmin, Xu, Yuxiao, Liu, Yongpeng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2018
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Intrusion detection systems (IDS) play an important role in the protection of network operations and services. In this paper, we propose an effective network intrusion detection scheme based on deep learning techniques. The proposed scheme employs a denoising autoencoder (DAE) with a weighted loss function for feature selection, which determines a limited number of important features for intrusion detection to reduce feature dimensionality. The selected data is then classified by a compact multilayer perceptron (MLP) for intrusion identification. Extensive experiments are conducted on the UNSW-NB dataset to demonstrate the effectiveness of the proposed scheme. With a small feature selection ratio of 5.9%, the proposed scheme is still able to achieve a superior performance in terms of different evaluation criteria. The strategic selection of a reduced set of features yields satisfactory detection performance with low memory and computing power requirements, making the proposed scheme a promising solution to intrusion detection in high-speed networks.
AbstractList Intrusion detection systems (IDS) play an important role in the protection of network operations and services. In this paper, we propose an effective network intrusion detection scheme based on deep learning techniques. The proposed scheme employs a denoising autoencoder (DAE) with a weighted loss function for feature selection, which determines a limited number of important features for intrusion detection to reduce feature dimensionality. The selected data is then classified by a compact multilayer perceptron (MLP) for intrusion identification. Extensive experiments are conducted on the UNSW-NB dataset to demonstrate the effectiveness of the proposed scheme. With a small feature selection ratio of 5.9%, the proposed scheme is still able to achieve a superior performance in terms of different evaluation criteria. The strategic selection of a reduced set of features yields satisfactory detection performance with low memory and computing power requirements, making the proposed scheme a promising solution to intrusion detection in high-speed networks.
Author Wu, Chase Q.
Gao, Shan
Xu, Yuxiao
Zhang, Hongpo
Liu, Yongpeng
Wang, Zongmin
Author_xml – sequence: 1
  givenname: Hongpo
  surname: Zhang
  fullname: Zhang, Hongpo
  organization: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, China
– sequence: 2
  givenname: Chase Q.
  surname: Wu
  fullname: Wu, Chase Q.
  organization: Department of Computer Science, New Jersey Institute of Technology, Newark, USA
– sequence: 3
  givenname: Shan
  surname: Gao
  fullname: Gao, Shan
  organization: Cooperative Innovation Center of Internet Healthcare, Zhengzhou University, Zhengzhou, China
– sequence: 4
  givenname: Zongmin
  surname: Wang
  fullname: Wang, Zongmin
  organization: Cooperative Innovation Center of Internet Healthcare, Zhengzhou University, Zhengzhou, China
– sequence: 5
  givenname: Yuxiao
  surname: Xu
  fullname: Xu, Yuxiao
  organization: Department of Research and Development, Hangzhou DPtech Technologies Co., Ltd., Hangzhou, China
– sequence: 6
  givenname: Yongpeng
  surname: Liu
  fullname: Liu, Yongpeng
  organization: Cooperative Innovation Center of Internet Healthcare, Zhengzhou University, Zhengzhou, China
BookMark eNotj8tOwzAUBY0EElDyAYiNf6DBjuPXsoS2RIoA8VhX1_ENGKhTOQHE3xNEV2c1RzOn5DD2EQk55yznnNnLurp_yAvGTW5kqbgqDkhmteFSGCW0MeKYZMPwxhgrlBGlYCdkvYh02XXYjuEL6TXijjYIKYb4Qq9gQE8f21fcIu36RG9x_O7TO63jmD6H0McJGP_QPp6Row4-Bsz2OyPPq-VTdTNv7tZ1tWjmgWs5zkFZFE4JAMGMRnQleI0elLYSWqW8AXSmaC0aJyQ465TzTnplp6Jykp6Ri__fgIibXQpbSD-bfa74BYeQTPg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR.2018.8546162
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538637883
153863788X
EndPage 687
ExternalDocumentID 8546162
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-a69e3b63aa3087eeb4ad7eda6795ac66d8aeb82c9e8b35ab9b6bdb5d698544683
IEDL.DBID RIE
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455146800114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:51:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a69e3b63aa3087eeb4ad7eda6795ac66d8aeb82c9e8b35ab9b6bdb5d698544683
PageCount 6
ParticipantIDs ieee_primary_8546162
PublicationCentury 2000
PublicationDate 2018-Aug.
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug.
PublicationDecade 2010
PublicationTitle 2018 24th International Conference on Pattern Recognition (ICPR)
PublicationTitleAbbrev ICPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683430
Score 2.3432457
Snippet Intrusion detection systems (IDS) play an important role in the protection of network operations and services. In this paper, we propose an effective network...
SourceID ieee
SourceType Publisher
StartPage 682
SubjectTerms deep learning
denoising autoen-coder
Engines
Feature extraction
feature selection
Hidden Markov models
Intrusion detection
Intrusion detection system
Noise reduction
Training
Title An Effective Deep Learning Based Scheme for Network Intrusion Detection
URI https://ieeexplore.ieee.org/document/8546162
WOSCitedRecordID wos000455146800114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eCpaiu-ycGj21eyeRy1Wi1IWUShtzLZzGoPbout_n6T3XVF8OItCRlCJpnMkHzzBeACEeUgUyIyfWcj4fdQ5K3IV7NAbqe4j9kLyvwHNZ3q2cwkDbisc2GIqACfUTcUi7d8t0w_wlVZT8dCDsKBu6WULHO16vuUodRc8O-Hy0Hf9Caj5DFgt3S3kvv1gUrhP8at_428C52fRDyW1C5mDxqU70OrihxZZZfrNtxd5azkIfaHF7shWrGKOPWFXXs_Ffq-0hsxH6KyaYn8ZpM8JFz4dfECmwKRlXfgeXz7NLqPqi8SooX3-5sIpSFuJUcMzH5EVqBT5FAqE2MqpdNIVg9TQ9ryGK2x0jobO2n8jIRX2QE082VOh8CEMpnmNvCzW0FuqLVzaHQWZ6Zv0eERtINe5quSBWNeqeT47-YT2AmqL6Fyp9D0E6Iz2E4_N4v1-3mxdF_zu5st
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhEJ40aqKnqq3xLQePbl_LsnDUam1j3TSmJr01wzKrPbhtbPX3C7tYY-LFGxAIYQaYCXzzDcAlIop2FvNAtYwOuN1DgT1Ftpo5crs4tD57QZk_jJNETiZqVIGrdSwMERXgM2q4YvGXb-bph3sqa8qIi7a7cDdd5iwfrbV-UekIGfLw--uy3VLNQXf05NBbsuFH_kqhUliQXvV_c-9C_ScUj43WRmYPKpTvQ9X7jsyfzGUN7q9zVjIR2-uL3RItmKdOfWE31lK5vq_0Rsw6qSwpsd9skLuQC6sZO2BVYLLyOjz37sbdfuCTJAQza_lXAQpFoRYhouP2I9IcTUwGRawiTIUwEknLTqpI6jBCrbTQRkdGKLsibkV2ABv5PKdDYDxWmQy1Y2jXnExHSmNQySzKVEujwSOoOblMFyUPxtSL5Pjv5gvY7o8fh9PhIHk4gR2nhhI4dwobdnF0Blvp52q2fD8v1PgFOCKedg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+24th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=An+Effective+Deep+Learning+Based+Scheme+for+Network+Intrusion+Detection&rft.au=Zhang%2C+Hongpo&rft.au=Wu%2C+Chase+Q.&rft.au=Gao%2C+Shan&rft.au=Wang%2C+Zongmin&rft.date=2018-08-01&rft.pub=IEEE&rft.spage=682&rft.epage=687&rft_id=info:doi/10.1109%2FICPR.2018.8546162&rft.externalDocID=8546162