Deriving Streaming Graph Algorithms from Static Definitions

Increasing volumes of data and the desire for realtime query capability make the development of efficient streaming algorithms for data analytics valuable. Streaming graph algorithms that avoid unnecessary recomputation through clever application of data dependency analysis are often more complex to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) s. 637 - 642
Hlavní autori: Ediger, David, Fairbanks, James P.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2017
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Increasing volumes of data and the desire for realtime query capability make the development of efficient streaming algorithms for data analytics valuable. Streaming graph algorithms that avoid unnecessary recomputation through clever application of data dependency analysis are often more complex to derive than their static counterparts. This paper discusses a method to derive algorithms for streaming graph analysis from static formulations Combining tuned graph algorithms building blocks with an appropriate functional language, a graph query planner should be able to correctly implement most static and streaming versions of an algorithm from a single mathematical formulation. We provide a detailed analysis for the case of updating triangle counts in a streaming graph using linear algebra and an experimental evaluation in Julia.
AbstractList Increasing volumes of data and the desire for realtime query capability make the development of efficient streaming algorithms for data analytics valuable. Streaming graph algorithms that avoid unnecessary recomputation through clever application of data dependency analysis are often more complex to derive than their static counterparts. This paper discusses a method to derive algorithms for streaming graph analysis from static formulations Combining tuned graph algorithms building blocks with an appropriate functional language, a graph query planner should be able to correctly implement most static and streaming versions of an algorithm from a single mathematical formulation. We provide a detailed analysis for the case of updating triangle counts in a streaming graph using linear algebra and an experimental evaluation in Julia.
Author Ediger, David
Fairbanks, James P.
Author_xml – sequence: 1
  givenname: David
  surname: Ediger
  fullname: Ediger, David
– sequence: 2
  givenname: James P.
  surname: Fairbanks
  fullname: Fairbanks, James P.
BookMark eNotjM1KAzEURiPYhdauXbiZF5gxN8nkB1elo7VQsNCKy5JkbtpAZ6ZkguDbW6mr73AOfPfkth96JOQRaAVAzfNq02y2XxWjoCoQ8obMjNJQcy25oJrekZcGU_yO_aHY5oS2-6NlsudjMT8dhhTzsRuLkIbu0m2OvmgwxD7mOPTjA5kEexpx9r9T8vn2ulu8l-uP5WoxX5cRVJ1LK4WiUFPn2sACDcCouzgOXgnng9TCKYbMiqCdcoZ7J7njwbcosZXe8Cl5uv5GRNyfU-xs-tkrI2ugnP8CUJFFjQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPDPSW.2017.146
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538634080
1538634082
EndPage 642
ExternalDocumentID 7965103
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-a6470150bbdf2f0f120ba6431c74bcf684b72e2a4f8b7b93cb63b3fcde6ed6c93
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417418900072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:09 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a6470150bbdf2f0f120ba6431c74bcf684b72e2a4f8b7b93cb63b3fcde6ed6c93
PageCount 6
ParticipantIDs ieee_primary_7965103
PublicationCentury 2000
PublicationDate 2017-May
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-May
PublicationDecade 2010
PublicationTitle 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
PublicationTitleAbbrev IPDPSW
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6331724
Snippet Increasing volumes of data and the desire for realtime query capability make the development of efficient streaming algorithms for data analytics valuable....
SourceID ieee
SourceType Publisher
StartPage 637
SubjectTerms Algorithm design and analysis
Computational modeling
Database languages
graph algorithm building blocks (GABB)
Graph analysis
GraphBLAS
Linear algebra
Mathematical model
Measurement
Optimization
streaming graphs
triangle counting
Title Deriving Streaming Graph Algorithms from Static Definitions
URI https://ieeexplore.ieee.org/document/7965103
WOSCitedRecordID wos000417418900072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMToBbxlgdG0iaxa8diQpQCSxUJEN0qPyESTVAf_H58SVUYWNhON9g629Ldd777DuAySzxlLgnoRGZxxGjsIqnoMEhDEyulQ5Rv62ETYjLJplOZt-Bq2wvjnKuLz1wfxfov31ZmjamygZAcCeDa0BaCN71aG7aeJJaDx3yUP71itZbo1wHtr3EptbcY7_1vn33o_bTdkXzrUA6g5couXI_CG0HUT_ADWc1RukeWaXLz8VYFaP8-XxJsEiEYNxaGjJwvyqYQqwcv47vn24doM_EgKoIbX0WKM4EpCK2tT33skzTWQUcTI5g2nmdMi9SlivlMCy2p0Zxq6o113FluJD2ETlmV7ghIAJg6QAcdwquEGRMwMxXayrCIT5Xl9hi6aPjssyG1mG1sPvlbfQq7eK5Npd8ZdFaLtTuHHfO1KpaLi_omvgF98Y1L
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmuhJDRjf9uDRhe62tNt4MiJCRLKJGLmR7Qs3kcXw8Pfb7hL04MXbZA5tpm0y801nvgG4jkNLqAkdOhExDijBJhApaTmppXCaShfl62LYBB8M4tFIJBW42fTCGGOK4jPT8GLxl69nauVTZU0umCeA24LtFqURLru11nw9IRbNXtJOXt58vRZvFCHtr4Ephb_o7P9vpwOo_zTeoWTjUg6hYvIa3LbdK_G4H_kv5HTqpUfPM43uPiYzB-7fpwvk20SQjxwzhdrGZnlZilWH187D8L4brGceBJlz5MsgZZT7JISU2kYW2zDC0ulIqDiVyrKYSh6ZKKU2llwKoiQjklilDTOaKUGOoJrPcnMMyEFM6cCDdAFWSJVyqJlwqYVbxEapZvoEat7w8WdJazFe23z6t_oKdrvD5_643xs8ncGeP-Oy7u8cqsv5ylzAjvpaZov5ZXEr3wX1kJI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Parallel+and+Distributed+Processing+Symposium+Workshops+%28IPDPSW%29&rft.atitle=Deriving+Streaming+Graph+Algorithms+from+Static+Definitions&rft.au=Ediger%2C+David&rft.au=Fairbanks%2C+James+P.&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=637&rft.epage=642&rft_id=info:doi/10.1109%2FIPDPSW.2017.146&rft.externalDocID=7965103