Deriving Streaming Graph Algorithms from Static Definitions
Increasing volumes of data and the desire for realtime query capability make the development of efficient streaming algorithms for data analytics valuable. Streaming graph algorithms that avoid unnecessary recomputation through clever application of data dependency analysis are often more complex to...
Uložené v:
| Vydané v: | 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) s. 637 - 642 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.05.2017
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Increasing volumes of data and the desire for realtime query capability make the development of efficient streaming algorithms for data analytics valuable. Streaming graph algorithms that avoid unnecessary recomputation through clever application of data dependency analysis are often more complex to derive than their static counterparts. This paper discusses a method to derive algorithms for streaming graph analysis from static formulations Combining tuned graph algorithms building blocks with an appropriate functional language, a graph query planner should be able to correctly implement most static and streaming versions of an algorithm from a single mathematical formulation. We provide a detailed analysis for the case of updating triangle counts in a streaming graph using linear algebra and an experimental evaluation in Julia. |
|---|---|
| AbstractList | Increasing volumes of data and the desire for realtime query capability make the development of efficient streaming algorithms for data analytics valuable. Streaming graph algorithms that avoid unnecessary recomputation through clever application of data dependency analysis are often more complex to derive than their static counterparts. This paper discusses a method to derive algorithms for streaming graph analysis from static formulations Combining tuned graph algorithms building blocks with an appropriate functional language, a graph query planner should be able to correctly implement most static and streaming versions of an algorithm from a single mathematical formulation. We provide a detailed analysis for the case of updating triangle counts in a streaming graph using linear algebra and an experimental evaluation in Julia. |
| Author | Ediger, David Fairbanks, James P. |
| Author_xml | – sequence: 1 givenname: David surname: Ediger fullname: Ediger, David – sequence: 2 givenname: James P. surname: Fairbanks fullname: Fairbanks, James P. |
| BookMark | eNotjM1KAzEURiPYhdauXbiZF5gxN8nkB1elo7VQsNCKy5JkbtpAZ6ZkguDbW6mr73AOfPfkth96JOQRaAVAzfNq02y2XxWjoCoQ8obMjNJQcy25oJrekZcGU_yO_aHY5oS2-6NlsudjMT8dhhTzsRuLkIbu0m2OvmgwxD7mOPTjA5kEexpx9r9T8vn2ulu8l-uP5WoxX5cRVJ1LK4WiUFPn2sACDcCouzgOXgnng9TCKYbMiqCdcoZ7J7njwbcosZXe8Cl5uv5GRNyfU-xs-tkrI2ugnP8CUJFFjQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IPDPSW.2017.146 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781538634080 1538634082 |
| EndPage | 642 |
| ExternalDocumentID | 7965103 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i175t-a6470150bbdf2f0f120ba6431c74bcf684b72e2a4f8b7b93cb63b3fcde6ed6c93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417418900072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:38:09 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-a6470150bbdf2f0f120ba6431c74bcf684b72e2a4f8b7b93cb63b3fcde6ed6c93 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_7965103 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-May |
| PublicationDateYYYYMMDD | 2017-05-01 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-May |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) |
| PublicationTitleAbbrev | IPDPSW |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6331724 |
| Snippet | Increasing volumes of data and the desire for realtime query capability make the development of efficient streaming algorithms for data analytics valuable.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 637 |
| SubjectTerms | Algorithm design and analysis Computational modeling Database languages graph algorithm building blocks (GABB) Graph analysis GraphBLAS Linear algebra Mathematical model Measurement Optimization streaming graphs triangle counting |
| Title | Deriving Streaming Graph Algorithms from Static Definitions |
| URI | https://ieeexplore.ieee.org/document/7965103 |
| WOSCitedRecordID | wos000417418900072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMToBbxlgdG0iaxa8diQpQCSxUJEN0qPyESTVAf_H58SVUYWNhON9g629Ldd777DuAySzxlLgnoRGZxxGjsIqnoMEhDEyulQ5Rv62ETYjLJplOZt-Bq2wvjnKuLz1wfxfov31ZmjamygZAcCeDa0BaCN71aG7aeJJaDx3yUP71itZbo1wHtr3EptbcY7_1vn33o_bTdkXzrUA6g5couXI_CG0HUT_ADWc1RukeWaXLz8VYFaP8-XxJsEiEYNxaGjJwvyqYQqwcv47vn24doM_EgKoIbX0WKM4EpCK2tT33skzTWQUcTI5g2nmdMi9SlivlMCy2p0Zxq6o113FluJD2ETlmV7ghIAJg6QAcdwquEGRMwMxXayrCIT5Xl9hi6aPjssyG1mG1sPvlbfQq7eK5Npd8ZdFaLtTuHHfO1KpaLi_omvgF98Y1L |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmuhJDRjf9uDRhe62tNt4MiJCRLKJGLmR7Qs3kcXw8Pfb7hL04MXbZA5tpm0y801nvgG4jkNLqAkdOhExDijBJhApaTmppXCaShfl62LYBB8M4tFIJBW42fTCGGOK4jPT8GLxl69nauVTZU0umCeA24LtFqURLru11nw9IRbNXtJOXt58vRZvFCHtr4Ephb_o7P9vpwOo_zTeoWTjUg6hYvIa3LbdK_G4H_kv5HTqpUfPM43uPiYzB-7fpwvk20SQjxwzhdrGZnlZilWH187D8L4brGceBJlz5MsgZZT7JISU2kYW2zDC0ulIqDiVyrKYSh6ZKKU2llwKoiQjklilDTOaKUGOoJrPcnMMyEFM6cCDdAFWSJVyqJlwqYVbxEapZvoEat7w8WdJazFe23z6t_oKdrvD5_643xs8ncGeP-Oy7u8cqsv5ylzAjvpaZov5ZXEr3wX1kJI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Parallel+and+Distributed+Processing+Symposium+Workshops+%28IPDPSW%29&rft.atitle=Deriving+Streaming+Graph+Algorithms+from+Static+Definitions&rft.au=Ediger%2C+David&rft.au=Fairbanks%2C+James+P.&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=637&rft.epage=642&rft_id=info:doi/10.1109%2FIPDPSW.2017.146&rft.externalDocID=7965103 |