A hybrid multiobjective evolutionary algorithm for solving truck and trailer vehicle routing problems

This paper considers a transportation problem for moving empty or laden containers for a logistic company. A model for this truck and trailer vehicle routing problem (TTVRP) is first constructed in the paper. The solution to the TTVRP consists of finding a complete routing schedule for serving the j...

Full description

Saved in:
Bibliographic Details
Published in:2003 Congress on Evolutionary Computation Vol. 3; pp. 2134 - 2141 Vol.3
Main Authors: Tan, K.C., Lee, T.H., Chew, Y.H., Lee, L.H.
Format: Conference Proceeding
Language:English
Published: IEEE 2003
Subjects:
ISBN:0780378040, 9780780378049
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper considers a transportation problem for moving empty or laden containers for a logistic company. A model for this truck and trailer vehicle routing problem (TTVRP) is first constructed in the paper. The solution to the TTVRP consists of finding a complete routing schedule for serving the jobs with minimum routing distance and number of trucks, subject to a number of constraints such as time windows and availability and multimodal combinatorial optimization problem, a hybrid multiobjective evolutionary algorithm (HMOEA) is applied to find the Pareto optimal routing solutions for the TTVRP. Detailed analysis is performed to extract useful decision-making information from the multiobjective optimization results. The computational results have shown that the HMOEA is effective for solving multiobjective combinatorial problems, such as finding useful trade-off solutions for the TTVRP.
AbstractList This paper considers a transportation problem for moving empty or laden containers for a logistic company. A model for this truck and trailer vehicle routing problem (TTVRP) is first constructed in the paper. The solution to the TTVRP consists of finding a complete routing schedule for serving the jobs with minimum routing distance and number of trucks, subject to a number of constraints such as time windows and availability and multimodal combinatorial optimization problem, a hybrid multiobjective evolutionary algorithm (HMOEA) is applied to find the Pareto optimal routing solutions for the TTVRP. Detailed analysis is performed to extract useful decision-making information from the multiobjective optimization results. The computational results have shown that the HMOEA is effective for solving multiobjective combinatorial problems, such as finding useful trade-off solutions for the TTVRP.
Author Lee, L.H.
Lee, T.H.
Chew, Y.H.
Tan, K.C.
Author_xml – sequence: 1
  givenname: K.C.
  surname: Tan
  fullname: Tan, K.C.
  organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore
– sequence: 2
  givenname: T.H.
  surname: Lee
  fullname: Lee, T.H.
  organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore
– sequence: 3
  givenname: Y.H.
  surname: Chew
  fullname: Chew, Y.H.
  organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore
– sequence: 4
  givenname: L.H.
  surname: Lee
  fullname: Lee, L.H.
BookMark eNotUMtqwzAQFLSFNmnuhV70A3ZlSZasYzBpUwj00p6DJK9jpbIV5Afk7ytoFoZZlplh2BW6H8IACL0UJC8Kot7qXZ1TQlheUKUUE3doRWRFWAInj2gzjmeShpdMlfIJwRZ3VxNdg_vZTy6YM9jJLYBhCX5Oh0HHK9b-FKKbuh63IeIx-MUNJzzF2f5iPTRp085DxAt0znrAMSRrUlxiMB768Rk9tNqPsLnxGv28777rfXb4-vist4fMFbKcMgXAmlaUrRDKcEWJJdpyKisjGiM5s0KXRkhTaNUKq3RTEUqNJJxXTVVSYGv0-p_rAOB4ia5P7Y-3T7A_2UBYNQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2003.1299936
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 2141 Vol.3
ExternalDocumentID 1299936
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-9ee3df65f669b4920c0ac4278b6db743c6a5b67b1a9f6c9ad8022b70448d852e3
IEDL.DBID RIE
ISBN 0780378040
9780780378049
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000221532900287&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue Aug 26 17:53:43 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-9ee3df65f669b4920c0ac4278b6db743c6a5b67b1a9f6c9ad8022b70448d852e3
ParticipantIDs ieee_primary_1299936
PublicationCentury 2000
PublicationDate 20030000
PublicationDateYYYYMMDD 2003-01-01
PublicationDate_xml – year: 2003
  text: 20030000
PublicationDecade 2000
PublicationTitle 2003 Congress on Evolutionary Computation
PublicationTitleAbbrev CEC
PublicationYear 2003
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453957
Score 1.3368781
Snippet This paper considers a transportation problem for moving empty or laden containers for a logistic company. A model for this truck and trailer vehicle routing...
SourceID ieee
SourceType Publisher
StartPage 2134
SubjectTerms Availability
Constraint optimization
Containers
Evolutionary computation
Logistics
Pareto optimization
Routing
Time factors
Transportation
Vehicles
Title A hybrid multiobjective evolutionary algorithm for solving truck and trailer vehicle routing problems
URI https://ieeexplore.ieee.org/document/1299936
Volume 3
WOSCitedRecordID wos000221532900287&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-AePCECsbv9ODRwVi3dj0aAvFgCAdNuJGufRMUNzNgCf-9r2XMmHgx2WHb4WXr3vp-7_NHyH3ADCBwS700DayDwrinBDquioFRTIQqSt3I_GcxmcSzmZw2yEPdCwMArvgMevbU5fJNrrc2VNZH24TmlDdJUwix79Wq4ykITWzKyXnmsc_sXJ1qpFN9LQ9pSl_2h6OhGwbaq2T-IldxtmXc_t9TnZDuT5Mendbm55Q0IDsj7QNLA61-2g6BR7rY2b4s6ooH8-R9v8dRKCu1U8WOqtVbXiw3i0-KKJaiQtpAA7XDZT-oygy1VBIrFFvCwmoaLfKtLZimFSHNuktex6OX4ZNXkSt4S0QMG08CMJPyKOVcJqEMfO0rbXk3Em4ShBWaqyjhIhkomXItlbE9uYnw0Z0zcRQAOyetLM_ggtBwoPGQ4UCoKGS4JehAIK6KY5RiYqYvSceu2vxrPz9jXi3Y1d-3r8mxK5hzYY4b0sI3hVtypMvNcl3cuY_-DVe2qx8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNNETKhi_7cGjg7Fu3Xo0BIIRCQdMuJGu7QRFZsZHwn_vaxkzJl5Mdth6eNmat77v3w_g3qNKo-OWOEnimQCFMkeEGLgKqpWgoS-CxELm98J-PxqN-KAED8UsjNbaNp_purm1tXyVypVJlTXQNqE5ZXuwH_i-19xOaxUZFXROTNHJxuaRSw2yTg7qVDzzXaHS5Y1Wu2XhQOu51F_0Kta6dCr_e69jqP2M6ZFBYYBOoKTnp1DZ8TSQ_Letgn4kk42ZzCK2fTCN37enHNHrXPFEtiFi9pZm0-Xkk6AfS1AlTaqBGHjZDyLmihgyiRmKXeuJ0TWSpSvTMk1ySppFDV477WGr6-T0Cs4UfYalw7WmKmFBwhiPfe650hXSMG_ETMXoWEgmgpiFcVPwhEkulJnKjUMXAzoVBZ6mZ1Cep3N9DsRvSry43wxF4FM8FKQXomcVRShFRVReQNXs2vhri6Axzjfs8u_lOzjsDl96495T__kKjmz7nE16XEMZv1rfwIFcL6eL7NYqwDduPK5m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2003+Congress+on+Evolutionary+Computation&rft.atitle=A+hybrid+multiobjective+evolutionary+algorithm+for+solving+truck+and+trailer+vehicle+routing+problems&rft.au=Tan%2C+K.C.&rft.au=Lee%2C+T.H.&rft.au=Chew%2C+Y.H.&rft.au=Lee%2C+L.H.&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780378049&rft.volume=3&rft.spage=2134&rft.epage=2141+Vol.3&rft_id=info:doi/10.1109%2FCEC.2003.1299936&rft.externalDocID=1299936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378049/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378049/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378049/sc.gif&client=summon&freeimage=true