An Information Divergence Estimation over Data Streams

In this paper, we consider the setting of large scale distributed systems, in which each node needs to quickly process a huge amount of data received in the form of a stream that may have been tampered with by an adversary. In this situation, a fundamental problem is how to detect and quantify the a...

Full description

Saved in:
Bibliographic Details
Published in:2012 IEEE 11th International Symposium on Network Computing and Applications pp. 28 - 35
Main Authors: Anceaume, E., Busnel, Y.
Format: Conference Proceeding
Language:English
Published: IEEE 01.08.2012
Subjects:
ISBN:9781467322140, 1467322148
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we consider the setting of large scale distributed systems, in which each node needs to quickly process a huge amount of data received in the form of a stream that may have been tampered with by an adversary. In this situation, a fundamental problem is how to detect and quantify the amount of work performed by the adversary. To address this issue, we have proposed in a prior work, AnKLe, a one pass algorithm for estimating the Kullback-Leibler divergence of an observed stream compared to the expected one. Experimental evaluations have shown that the estimation provided by AnKLe is accurate for different adversarial settings for which the quality of other methods dramatically decreases. In the present paper, considering n as the number of distinct data items in a stream, we show that AnKLe is an (ε, δ)-approximation algorithm with a space complexity Õ(1/ε + 1/ε 2 ) bits in "most" cases, and Õ(1/ε + n-ε -1 /ε 2 ) otherwise. To the best of our knowledge, an approximation algorithm for estimating the Kullback-Leibler divergence has never been analyzed before.
AbstractList In this paper, we consider the setting of large scale distributed systems, in which each node needs to quickly process a huge amount of data received in the form of a stream that may have been tampered with by an adversary. In this situation, a fundamental problem is how to detect and quantify the amount of work performed by the adversary. To address this issue, we have proposed in a prior work, AnKLe, a one pass algorithm for estimating the Kullback-Leibler divergence of an observed stream compared to the expected one. Experimental evaluations have shown that the estimation provided by AnKLe is accurate for different adversarial settings for which the quality of other methods dramatically decreases. In the present paper, considering n as the number of distinct data items in a stream, we show that AnKLe is an (ε, δ)-approximation algorithm with a space complexity Õ(1/ε + 1/ε 2 ) bits in "most" cases, and Õ(1/ε + n-ε -1 /ε 2 ) otherwise. To the best of our knowledge, an approximation algorithm for estimating the Kullback-Leibler divergence has never been analyzed before.
Author Busnel, Y.
Anceaume, E.
Author_xml – sequence: 1
  givenname: E.
  surname: Anceaume
  fullname: Anceaume, E.
  email: Emmanuelle.Anceaume@irisa.fr
  organization: IRISA, Rennes, France
– sequence: 2
  givenname: Y.
  surname: Busnel
  fullname: Busnel, Y.
  email: Yann.Busnel@univ-nantes.fr
  organization: LINA, Univ. de Nantes, Nantes, France
BookMark eNotzjFPwzAQBWAjQIKWTIws-QMJd7Zj-8YoLVCpagdgruzmjIKog5IIiX9PJPqWJ33D01uIq9QnFuIeoUQEetw1dSkBZYnmQizAGqq0tcpeioysQ22skhI13IhsHD9hzqwS6FaYOuWbFPvh5KeuT_mq--Hhg9OR8_U4dWftZ8xXfvL56zSwP4134jr6r5Gzcy_F-9P6rXkptvvnTVNviw5tNRXEwbcqIocQHCqIRI5dOHptW6lm0B7BxCoEy-QlBR0iUMXecesAW7UUD_-7HTMfvof50PB7MJIIpVJ_3eRHqA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NCA.2012.16
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 0769547737
9780769547732
EndPage 35
ExternalDocumentID 6299123
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-9ebad3f1ebbb8130f998e8bca47d231304a106f5bb7e9a29b4bf095ea8ed801d3
IEDL.DBID RIE
ISBN 9781467322140
1467322148
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312674700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 05:14:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-9ebad3f1ebbb8130f998e8bca47d231304a106f5bb7e9a29b4bf095ea8ed801d3
PageCount 8
ParticipantIDs ieee_primary_6299123
PublicationCentury 2000
PublicationDate 2012-Aug.
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-Aug.
PublicationDecade 2010
PublicationTitle 2012 IEEE 11th International Symposium on Network Computing and Applications
PublicationTitleAbbrev nca
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000781209
Score 1.5136088
Snippet In this paper, we consider the setting of large scale distributed systems, in which each node needs to quickly process a huge amount of data received in the...
SourceID ieee
SourceType Publisher
StartPage 28
SubjectTerms Algorithm design and analysis
Approximation algorithms
Approximation methods
Data stream
divergence
Entropy
Estimation
Frequency estimation
Radiation detectors
randomized approximation algorithm
Title An Information Divergence Estimation over Data Streams
URI https://ieeexplore.ieee.org/document/6299123
WOSCitedRecordID wos000312674700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61iIEJUIt4ywMjbpM4jeOx6kMMqOoAqFt1Ts5SB1LUpvx-zm4oDCxstic_7zvb33cH8IClTgY2RYlotUw1KWmjvJCYkB0kWalVUPG_PevZLF8szLwFjwctDBEF8hn1fDH85ZfrYuefyvoZ2062tG1oa53ttVqH9xQftCaJTNBuZZq3Kfv53yGdmnrU6PPiyPRno6HndSU9n-j8V16VACvT0_916Ay6P_o8MT8gzzm0qOpANqxEIy7yky3GnnERQm2KCZ_jptUzNsUYaxT-Pxrft114nU5eRk-yyYogVwz1tTRksVQuJmttzgjk-MJEuS0w1SU7aypKka95bmCtJoOJsal17EcR5lQyHJXqAo6qdUWXIHTBC8TwhAoxNc5hjJHzSUBVrm0cF1fQ8WNefuwDXyyb4V7_3XwDJ35G9-y4WziqNzu6g-Pis15tN_dhtb4A-KqS2Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VggQToBbxTQZG3Ca2EydjVVoVUaIOBXWrzslZ6kCK2pTfj52GwsDCZnvy572z_d4dwD3miodaIkPUiklFgmk_zhhy0iGPciUqFf_bWKVpPJslkwY87LQwRFSRz6jjitVffr7MNu6prBtZ22kt7R7sh1Jyf6vW2r2ouLA13E8q9Vak7Ea1nv53UKe67tcKvcBPumm_55hdvONSnf_KrFIBy_D4f106gfaPQs-b7LDnFBpUtCDqFV4tL3LT7T06zkUVbNMb2JNctzrOpveIJXruRxrf1214HQ6m_RGr8yKwhQX7kiWkMRcmIK11bDHI2CsTxTpDqXLrrglfor3omVBrRQnyREttrCdFGFNuASkXZ9AslgWdg6cyu0QWoFAgysQYDNA3Lg2oiJUOguwCWm7M849t6It5PdzLv5vv4HA0fRnPx0_p8xUcudndcuWuoVmuNnQDB9lnuVivbquV-wLSYJYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+11th+International+Symposium+on+Network+Computing+and+Applications&rft.atitle=An+Information+Divergence+Estimation+over+Data+Streams&rft.au=Anceaume%2C+E.&rft.au=Busnel%2C+Y.&rft.date=2012-08-01&rft.pub=IEEE&rft.isbn=9781467322140&rft.spage=28&rft.epage=35&rft_id=info:doi/10.1109%2FNCA.2012.16&rft.externalDocID=6299123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467322140/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467322140/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467322140/sc.gif&client=summon&freeimage=true