A Streamlined Difference Ring Theory: Indefinite Nested Sums, the Alternating Sign, and the Parameterized Telescoping Problem
We present an algebraic framework to represent indefinite nested sums over hyper geometric expressions in difference rings. In order to accomplish this task, parts of Karr's difference field theory have been extended to a ring theory in which also the alternating sign can be expressed. The unde...
Uloženo v:
| Vydáno v: | 2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing s. 26 - 33 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2014
|
| Témata: | |
| ISBN: | 9781479984473, 1479984477 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present an algebraic framework to represent indefinite nested sums over hyper geometric expressions in difference rings. In order to accomplish this task, parts of Karr's difference field theory have been extended to a ring theory in which also the alternating sign can be expressed. The underlying machinery relies on algorithms that compute all solutions of a given parameterized telescoping equation. As a consequence, we can solve the telescoping and creative telescoping problem in such difference rings. |
|---|---|
| ISBN: | 9781479984473 1479984477 |
| DOI: | 10.1109/SYNASC.2014.12 |

