Separating time-frequency sources from time-domain convolutive mixtures using non-negative matrix factorization
This paper addresses the problem of under-determined audio source separation in multichannel reverberant mixtures. We target a semiblind scenario assuming that the mixing filters are known. Source separation is performed from the time-domain mixture signals in order to accurately model the convoluti...
Uloženo v:
| Vydáno v: | IEEE Workshop on Applications of Signal Processing to Audio and Acoustics : proceedings s. 264 - 268 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2017
|
| Témata: | |
| ISSN: | 1947-1629 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper addresses the problem of under-determined audio source separation in multichannel reverberant mixtures. We target a semiblind scenario assuming that the mixing filters are known. Source separation is performed from the time-domain mixture signals in order to accurately model the convolutive mixing process. The source signals are however modeled as latent variables in a time-frequency domain. In a previous paper we proposed to use the modified discrete cosine transform. The present paper generalizes the method to the use of the odd-frequency short-time Fourier transform. In this domain, the source coefficients are modeled as centered complex Gaussian random variables whose variances are structured by means of a non-negative matrix factorization model. The inference procedure relies on a variational expectation-maximization algorithm. In the experiments we discuss the choice of the source representation and we show that the proposed approach outperforms two methods from the literature. |
|---|---|
| ISSN: | 1947-1629 |
| DOI: | 10.1109/WASPAA.2017.8170036 |