Hybrid PCA-ILGC clustering approach for high dimensional data
The availability of high dimensional dataset that incredible growth, imposes insufficient conventional approaches to extract hidden useful information. As a result, today researchers are challenged to develop new techniques to deal with massive high dimensional data that has not only in term of numb...
Saved in:
| Published in: | 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) pp. 420 - 424 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.10.2012
|
| Subjects: | |
| ISBN: | 9781467317139, 1467317136 |
| ISSN: | 1062-922X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The availability of high dimensional dataset that incredible growth, imposes insufficient conventional approaches to extract hidden useful information. As a result, today researchers are challenged to develop new techniques to deal with massive high dimensional data that has not only in term of number of data but also in the number of attributes. In order to improve effectiveness and accuracy of mining task on high dimensional data, an efficient dimensionality reduction method should be executed in data preprocessing stage before clustering technique is applied. Many clustering algorithms has been proposed and used to discover useful information from a dataset. Iterative Local Gaussian Clustering (ILGC) is a simple density based clustering technique that has successfully discovered number of clusters represented in the dataset. In this paper we proposed to use the Principal Component Analysis (PCA) method to preprocess the data prior to ILGC clustering in order to simplify the analysis and visualization of multi dimensional data set. The proposed approach is validated with benchmark classification datasets. In addition, the performance of proposed hybrid PCA-ILGC clustering approach is compared to original ILGC, basic k-means and hybridized k-means. The experimental results indicate that the proposed approach is capable to obtain clusters with higher accuracy, and time taken to process the data was decreased. |
|---|---|
| AbstractList | The availability of high dimensional dataset that incredible growth, imposes insufficient conventional approaches to extract hidden useful information. As a result, today researchers are challenged to develop new techniques to deal with massive high dimensional data that has not only in term of number of data but also in the number of attributes. In order to improve effectiveness and accuracy of mining task on high dimensional data, an efficient dimensionality reduction method should be executed in data preprocessing stage before clustering technique is applied. Many clustering algorithms has been proposed and used to discover useful information from a dataset. Iterative Local Gaussian Clustering (ILGC) is a simple density based clustering technique that has successfully discovered number of clusters represented in the dataset. In this paper we proposed to use the Principal Component Analysis (PCA) method to preprocess the data prior to ILGC clustering in order to simplify the analysis and visualization of multi dimensional data set. The proposed approach is validated with benchmark classification datasets. In addition, the performance of proposed hybrid PCA-ILGC clustering approach is compared to original ILGC, basic k-means and hybridized k-means. The experimental results indicate that the proposed approach is capable to obtain clusters with higher accuracy, and time taken to process the data was decreased. |
| Author | Ngah, R. Musdholifah, A. Hashim, S. Z. M. |
| Author_xml | – sequence: 1 givenname: A. surname: Musdholifah fullname: Musdholifah, A. email: aina_m@ugm.ac.id organization: Dept. of Software Eng., Univ. Teknol. Malaysia (UTM), Skudai, Malaysia – sequence: 2 givenname: S. Z. M. surname: Hashim fullname: Hashim, S. Z. M. email: sitizaiton@utm.my organization: Dept. of Software Eng., Univ. Teknol. Malaysia (UTM), Skudai, Malaysia – sequence: 3 givenname: R. surname: Ngah fullname: Ngah, R. email: razalin@fke.utm.my organization: Wireless Commun. Centre, Univ. Teknol. Malaysia (UTM), Skudai, Malaysia |
| BookMark | eNo1j9FKwzAYRiNOcJ17Ab3JC7TmT9KkufBiBLcVKgoqeDfSNFkjXVvSebG3d-C8Ohw4fPAlaNYPvUPoHkgGQNRjqd9fdEYJ0EwwKaUgVygBLiQDCZxfo6WSxb8zNUNzIIKmitKvW5RM0zchlHAo5uhpe6pjaPCbXqVltdHYdj_T0cXQ77EZxzgY22I_RNyGfYubcHD9FIbedLgxR3OHbrzpJre8cIE-188feptWr5tSr6o0gMyPqaoJszw3wKmntVCGO3a2mhWu5g6M51bWBeOe59Z7y0FQIRsgVp0LpQRboIe_3eCc240xHEw87S7X2S_OdEuz |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICSMC.2012.6377760 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISBN | 1467317144 9781467317122 9781467317146 1467317128 |
| EndPage | 424 |
| ExternalDocumentID | 6377760 |
| Genre | orig-research |
| GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-9b03c45a142f2b69a4e35a1b38eb4e1af4c7b834f45cffc416267d10c938e9963 |
| IEDL.DBID | RIE |
| ISBN | 9781467317139 1467317136 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316869200071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1062-922X |
| IngestDate | Wed Aug 27 03:40:40 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-9b03c45a142f2b69a4e35a1b38eb4e1af4c7b834f45cffc416267d10c938e9963 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_6377760 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-Oct. |
| PublicationDateYYYYMMDD | 2012-10-01 |
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-Oct. |
| PublicationDecade | 2010 |
| PublicationTitle | 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) |
| PublicationTitleAbbrev | ICSMC |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020418 ssj0001107051 |
| Score | 1.818118 |
| Snippet | The availability of high dimensional dataset that incredible growth, imposes insufficient conventional approaches to extract hidden useful information. As a... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 420 |
| SubjectTerms | Accuracy Algorithm design and analysis Clustering Clustering algorithms Data mining Data visualization dimensionality reduction Heart iterative local Gaussian clustering algorithm Principal component analysis |
| Title | Hybrid PCA-ILGC clustering approach for high dimensional data |
| URI | https://ieeexplore.ieee.org/document/6377760 |
| WOSCitedRecordID | wos000316869200071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMcfc3jQi-6H-JscPCiYLU3Spjl4kOLcYI6BP9htNGkKA9lkPwT_e5O02xS8eGpTGlqSlvde8r6fB3ClRCyDMM3sx8syzDWRWApXQ0MQxR1Ci3gh7VtfDAbxaCSHFbjdaGGMMT75zLTcqd_Lz2Z65ZbK2hETQkQ2QN-xh0KrtV1PsXGMR02VwRbhQSGDiyiWlI68qCsS1lwGLFqznsq2XKtpiGz3kuenxKV80Vb5uF91V7zZ6Rz874UPobnV76HhxjLVoGKmddj_gR6sQ638qRfouiRP3zTgrvvlBFxomNzjXv8xQfp95UAKtgdaw8eR9XKRgxyjzBUGKKAeyCWaNuG18_CSdHFZXwFPrNOwxFIRpnmYBpzmVEUy5YbZlmKxUdwEac61UDHjOQ91nmvrutFIZAHR0t5h4yR2BNXpbGqOAYVGhyZkQgqacdvbYQodaCczItapICfQcKMz_igQGuNyYE7_vnwGe24Cipy5c6gu5ytzAbv6czlZzC_9vH8DyAajag |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMcfYwrqRfdD5u8cPCjYLU3Spjl4kOLcsBsDp-w22iSFgWyyH4L_vUnbbQpevDUloSVNeO-l7_t5ANcJD4TrxcosXqocJrFwBLc1NDhOmEVo4UxI-xbxfj8YjcSgBHcbLYzWOks-0017mf3LVzO5skdlLZ9yzn0ToO94jBGcq7W2JyomkslgU0W4hZmbC-F84ghCRpmsy-fGYLrUX9OeirZY62mwaHXDl15ok75Is3jgr8ormeFpH_7vlY-gvlXwocHGNlWgpKdVOPgBH6xCpdjWC3RTsKdva3Df-bISLjQIH5xu9BQi-b6yKAUzAq3x48j4uchijpGypQFyrAeyqaZ1eG0_DsOOU1RYcCbGbVg6IsFUMi92GUlJ4ouYaWpaCQ10wrQbp0zyJKAsZZ5MU2mcN-Jz5WIpTA8TKdFjKE9nU90A5GnpaY9ywYliZrQFFVrUjtI8kDHHJ1CzszP-yCEa42JiTv--fQV7nWEvGkfd_vMZ7NuPkWfQnUN5OV_pC9iVn8vJYn6ZrYFvgOemsQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics+%28SMC%29&rft.atitle=Hybrid+PCA-ILGC+clustering+approach+for+high+dimensional+data&rft.au=Musdholifah%2C+A.&rft.au=Hashim%2C+S.+Z.+M.&rft.au=Ngah%2C+R.&rft.date=2012-10-01&rft.pub=IEEE&rft.isbn=9781467317139&rft.issn=1062-922X&rft.spage=420&rft.epage=424&rft_id=info:doi/10.1109%2FICSMC.2012.6377760&rft.externalDocID=6377760 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-922X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-922X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-922X&client=summon |

