Learning Fingerprint Orientation Fields Using Continuous Restricted Boltzmann Machines

We aim to learn local orientation field patterns in fingerprints and correct distorted field patterns in noisy fingerprint images. This is formulated as a learning problem and achieved using two continuous restricted Boltzmann machines. The learnt orientation fields are then used in conjunction with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - IEEE Computer Society Conference on Pattern Recognition and Image Processing s. 351 - 355
Hlavní autoři: Sahasrabudhe, Mihir, Namboodiri, Anoop M.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2013
Témata:
ISSN:0730-6512
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We aim to learn local orientation field patterns in fingerprints and correct distorted field patterns in noisy fingerprint images. This is formulated as a learning problem and achieved using two continuous restricted Boltzmann machines. The learnt orientation fields are then used in conjunction with traditional Gabor based algorithms for fingerprint enhancement. Orientation fields extracted by gradient-based methods are local, and do not consider neighboring orientations. If some amount of noise is present in a fingerprint, then these methods perform poorly when enhancing the image, affecting fingerprint matching. This paper presents a method to correct the resulting noisy regions over patches of the fingerprint by training two continuous restricted Boltzmann machines. The continuous RBMs are trained with clean fingerprint images and applied to overlapping patches of the input fingerprint. Experimental results show that one can successfully restore patches of noisy fingerprint images.
ISSN:0730-6512
DOI:10.1109/ACPR.2013.37