A Numerical Method for Solving a Class of Continuous-Time Linear Fractional Programming Problems

In this paper, we discuss a class of infinite-dimensional optimization problems called continuous-time linear fractional programming problems (FP). We provide a discrete approximation procedure to find numerical solutions of (FP) and to establish the estimation for the error bound of approximate sol...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2009 International Joint Conference on Computational Sciences and Optimization : 24-26 April 2009 Ročník 2; s. 761 - 765
Hlavní autoři: Ching-Feng Wen, Yung-Yih Lur, Sy-Ming Guu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2009
Témata:
ISBN:9780769536057, 0769536050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we discuss a class of infinite-dimensional optimization problems called continuous-time linear fractional programming problems (FP). We provide a discrete approximation procedure to find numerical solutions of (FP) and to establish the estimation for the error bound of approximate solutions. Moreover, in order to reduce the consumption of computational time of solving large scale finite-dimensional linear programs, we further develop recurrence algorithms to take over the conventional methods.
ISBN:9780769536057
0769536050
DOI:10.1109/CSO.2009.423