A Numerical Method for Solving a Class of Continuous-Time Linear Fractional Programming Problems
In this paper, we discuss a class of infinite-dimensional optimization problems called continuous-time linear fractional programming problems (FP). We provide a discrete approximation procedure to find numerical solutions of (FP) and to establish the estimation for the error bound of approximate sol...
Uloženo v:
| Vydáno v: | 2009 International Joint Conference on Computational Sciences and Optimization : 24-26 April 2009 Ročník 2; s. 761 - 765 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.04.2009
|
| Témata: | |
| ISBN: | 9780769536057, 0769536050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we discuss a class of infinite-dimensional optimization problems called continuous-time linear fractional programming problems (FP). We provide a discrete approximation procedure to find numerical solutions of (FP) and to establish the estimation for the error bound of approximate solutions. Moreover, in order to reduce the consumption of computational time of solving large scale finite-dimensional linear programs, we further develop recurrence algorithms to take over the conventional methods. |
|---|---|
| ISBN: | 9780769536057 0769536050 |
| DOI: | 10.1109/CSO.2009.423 |

