Sensor-Based Mobile Robot Navigation via Deep Reinforcement Learning

Navigation tasks for mobile robots have been widely studied over past several years. More recently, there have been many attempts to introduce the usage of machine learning algorithms. Deep learning techniques are of special importance because they have achieved excellent performance in various fiel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on Big Data and Smart Computing S. 147 - 154
Hauptverfasser: Han, Seung-Ho, Choi, Ho-Jin, Benz, Philipp, Loaiciga, Jorge
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.01.2018
Schlagworte:
ISSN:2375-9356
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Navigation tasks for mobile robots have been widely studied over past several years. More recently, there have been many attempts to introduce the usage of machine learning algorithms. Deep learning techniques are of special importance because they have achieved excellent performance in various fields, including robot navigation. Deep learning methods, however, require considerable amount of data for training deep learning models and their results may be difficult to interpret for researchers. To address this issue, we propose a novel model for mobile robot navigation using deep reinforcement learning. In our navigation tasks, no information about the environment is given to the robot beforehand. Additionally, the positions of obstacles and goal change in every episode. In order to succeed under these conditions, we combine several Q-learning techniques that are considered to be state-of-the-art. We first provide a description of our model and then verify it through a series of experiments.
AbstractList Navigation tasks for mobile robots have been widely studied over past several years. More recently, there have been many attempts to introduce the usage of machine learning algorithms. Deep learning techniques are of special importance because they have achieved excellent performance in various fields, including robot navigation. Deep learning methods, however, require considerable amount of data for training deep learning models and their results may be difficult to interpret for researchers. To address this issue, we propose a novel model for mobile robot navigation using deep reinforcement learning. In our navigation tasks, no information about the environment is given to the robot beforehand. Additionally, the positions of obstacles and goal change in every episode. In order to succeed under these conditions, we combine several Q-learning techniques that are considered to be state-of-the-art. We first provide a description of our model and then verify it through a series of experiments.
Author Loaiciga, Jorge
Benz, Philipp
Han, Seung-Ho
Choi, Ho-Jin
Author_xml – sequence: 1
  givenname: Seung-Ho
  surname: Han
  fullname: Han, Seung-Ho
– sequence: 2
  givenname: Ho-Jin
  surname: Choi
  fullname: Choi, Ho-Jin
– sequence: 3
  givenname: Philipp
  surname: Benz
  fullname: Benz, Philipp
– sequence: 4
  givenname: Jorge
  surname: Loaiciga
  fullname: Loaiciga, Jorge
BookMark eNotkMtKw0AYRkdRsK19Ad3MCyT-k7kvbesNokLVdZlk_oSRZiYkoeDbG9DVtzmcA9-SXMQUkZAbBjljYO82od2mrs8LYCYHAA5nZMkkN4orYYtzsii4lpnlUl2R9Th-zwyzyhYaFmT3gXFMQ7ZxI3r6mqpwRLpPVZromzuF1k0hRXoKju4Qe7rHEJs01NhhnGiJboghttfksnHHEdf_uyJfjw-f2-esfH962d6XWWBaTpk1tYFKoBVzHgRUWjWi1oXyztZGgGcgwXPuuXQaWKOhNl4oq5lSChrOV-T2zxsQ8dAPoXPDz8Fwpecj-C-OJkv_
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigComp.2018.00030
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1538636492
9781538636497
EISSN 2375-9356
EndPage 154
ExternalDocumentID 8367110
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-98c80b4e94196040b76f4c726da9c840d1050d33d35a701f70c8d469716660f33
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435014000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:50:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-98c80b4e94196040b76f4c726da9c840d1050d33d35a701f70c8d469716660f33
PageCount 8
ParticipantIDs ieee_primary_8367110
PublicationCentury 2000
PublicationDate 2018-Jan
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan
PublicationDecade 2010
PublicationTitle International Conference on Big Data and Smart Computing
PublicationTitleAbbrev BIGCOMP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001969270
Score 1.7718476
Snippet Navigation tasks for mobile robots have been widely studied over past several years. More recently, there have been many attempts to introduce the usage of...
SourceID ieee
SourceType Publisher
StartPage 147
SubjectTerms Data models
deep reinforcement learning
mobile robot navigation
Mobile robots
Navigation
Q-learning
Robot sensing systems
sensor based navigation
Task analysis
Training
Title Sensor-Based Mobile Robot Navigation via Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/8367110
WOSCitedRecordID wos000435014000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcBUoEV8ywMjpkkc2_FaSsVCVRWQulX-uFRZkqqk_f3YTtouLGyWF0tnn87v7t47hJ4MU0zGmhOq4tQBFAtEUcMId88rVllstFRh2ISYTrPFQs466PnAhQGA0HwGL34Zavm2MlufKhtmlIvY86lOhBANV-uYT5FcJiLa82IiORwVK-9Tvn3L90s2jc7HCSohgEx6_zv6HA2OTDw8O8SYC9SB8hL19qMYcOuZfTT-dHC02pCRC0oWf1TaOTueV7qq8VTtgoxGVeJdofAYYI3nEARTTcgN4lZjdTVA35O3r9d30g5IIIWL-jWRmckinYJMY6-xEmnB89SIhFsljUNu1n2eIkuppUw50-ciMpl1eFj4WmGUU3qFumVVwjXCFhj12iyKgUPMKlU0N0zoJNEcuI6zG9T3RlmuGw2MZWuP27-379CZt3qTqrhH3XqzhQd0anZ18bN5DBf3C-vHmMs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0ImugJFYzf9uDRle12226viAQjbAhiwo30C7KXXYILv9-2u8LFi7emlyYznUzfdN4bAJ4UEYQjSQMsUGwBijaBwIoE1F4vJBKkJBd-2ARL02Q-55MGeN5zYYwxvvnMvLil_8vXhdq6Ulk3wZQhx6c6InEcoYqtdaiocMojFv4yY0Le7WUrF1Wugct1TFatzocZKj6FDFr_O_wMdA5cPDjZZ5lz0DD5BWj9DmOAdWy2Qf_TAtJiE_RsWtJwXEgb7nBayKKEqdh5IY0ih7tMwL4xazg1XjJV-eogrFVWVx3wNXibvQ6DekRCkNm8XwY8UUkoY8Nj5FRWQsnoMlYsolpwZbGbts-nUGOsMRHW-EsWqkRbRMzcb2G4xPgSNPMiN1cAakOwU2cRxFjMLGKBl4owGUWSGipRcg3aziiLdaWCsajtcfP39iM4Gc7Go8XoPf24BafOA1Xh4g40y83W3INjtSuz782Dd-IPEAucEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=Sensor-Based+Mobile+Robot+Navigation+via+Deep+Reinforcement+Learning&rft.au=Han%2C+Seung-Ho&rft.au=Choi%2C+Ho-Jin&rft.au=Benz%2C+Philipp&rft.au=Loaiciga%2C+Jorge&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=147&rft.epage=154&rft_id=info:doi/10.1109%2FBigComp.2018.00030&rft.externalDocID=8367110