Resampling in Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based algorithm designed to find good solutions to optimization problems. Its characteristics have encouraged its adoption to tackle a variety of problems in different fields. However, when such problems are subject to noise, the performance of PSO s...

Full description

Saved in:
Bibliographic Details
Published in:2013 IEEE Congress on Evolutionary Computation pp. 947 - 954
Main Authors: Rada-Vilela, Juan, Mengjie Zhang, Johnston, Mark
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2013
Subjects:
ISBN:1479904538, 9781479904532
ISSN:1089-778X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Particle Swarm Optimization (PSO) is a population-based algorithm designed to find good solutions to optimization problems. Its characteristics have encouraged its adoption to tackle a variety of problems in different fields. However, when such problems are subject to noise, the performance of PSO suffers an immediate deterioration which demands the incorporation of noise handling mechanisms. One such mechanism comprises resampling methods, which re-evaluate the solutions multiple times in order to estimate their true objective values. The state-of-the-art integration with which the best results have been obtained utilizes the resampling method named Optimal Computing Budget Allocation (OCBA). This resampling method starts by estimating the objective values of all the solutions via Equal Resampling (ER), and then sequentially allocating further re-evaluations to the estimated best solutions. However, after having a first estimate via ER, we question the importance of the additional efforts to correctly select the true best solutions when a good-enough and accurate one can be selected. In this paper, we propose a new PSO algorithm based on ER in which the additional evaluations are allocated at once to the estimated best solutions, thus skipping the complexity of using OCBA. Experiments on 20 large-scale benchmark functions subject to different levels of noise show that the proposed algorithm produces similar results to PSO with OCBA in most cases.
AbstractList Particle Swarm Optimization (PSO) is a population-based algorithm designed to find good solutions to optimization problems. Its characteristics have encouraged its adoption to tackle a variety of problems in different fields. However, when such problems are subject to noise, the performance of PSO suffers an immediate deterioration which demands the incorporation of noise handling mechanisms. One such mechanism comprises resampling methods, which re-evaluate the solutions multiple times in order to estimate their true objective values. The state-of-the-art integration with which the best results have been obtained utilizes the resampling method named Optimal Computing Budget Allocation (OCBA). This resampling method starts by estimating the objective values of all the solutions via Equal Resampling (ER), and then sequentially allocating further re-evaluations to the estimated best solutions. However, after having a first estimate via ER, we question the importance of the additional efforts to correctly select the true best solutions when a good-enough and accurate one can be selected. In this paper, we propose a new PSO algorithm based on ER in which the additional evaluations are allocated at once to the estimated best solutions, thus skipping the complexity of using OCBA. Experiments on 20 large-scale benchmark functions subject to different levels of noise show that the proposed algorithm produces similar results to PSO with OCBA in most cases.
Author Johnston, Mark
Rada-Vilela, Juan
Mengjie Zhang
Author_xml – sequence: 1
  givenname: Juan
  surname: Rada-Vilela
  fullname: Rada-Vilela, Juan
  email: juan.rada-vilela@ecs.vuw.ac.nz
  organization: Sch. of Eng. & Comput. Sci., Victoria Univ. of Wellington, Wellington, New Zealand
– sequence: 2
  surname: Mengjie Zhang
  fullname: Mengjie Zhang
  email: mengjie.zhang@ecs.vuw.ac.nz
  organization: Sch. of Eng. & Comput. Sci., Victoria Univ. of Wellington, Wellington, New Zealand
– sequence: 3
  givenname: Mark
  surname: Johnston
  fullname: Johnston, Mark
  email: mark.johnston@msor.vuw.ac.nz
  organization: Sch. of Math., Stat. & Oper. Res., Victoria Univ. of Wellington, Wellington, New Zealand
BookMark eNpFj0tLw0AURq9YwbZ2L7jJ1kXinffMUkKrQqHiA7or08kdGUnSkAREf70FC66-czYHvhlM2kNLANcMC8bQ3ZXLsuDIRKGVMlq7M5gxaZxDqfj2_F-EncCUoXW5MXZ7CYth-ETEY8MgiincvtDgm65O7UeW2uzZ92MKNWWvX75vsk03pib9-DEd2iu4iL4eaHHaObyvlm_lY77ePDyV9-s8MaPG3AlOlYykhSe0fs-kY9zxIDWx6EmFfYxSHJkwRFd5rclVPJAly0VAK-Zw89dNRLTr-tT4_nt3uil-AYe0RgQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2013.6557669
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 147990452X
9781479904525
9781479904549
1479904546
9781479904518
1479904511
EndPage 954
ExternalDocumentID 6557669
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IE
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
ID FETCH-LOGICAL-i175t-932ed4fe63ae08ab1491292c46e1fae5cbff43e1fe0cf9da66e9d2ce8e823c083
IEDL.DBID RIE
ISBN 1479904538
9781479904532
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326235300123&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Wed Aug 27 04:19:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-932ed4fe63ae08ab1491292c46e1fae5cbff43e1fe0cf9da66e9d2ce8e823c083
PageCount 8
ParticipantIDs ieee_primary_6557669
PublicationCentury 2000
PublicationDate 2013-June
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationTitle 2013 IEEE Congress on Evolutionary Computation
PublicationTitleAbbrev CEC
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001107003
ssj0014519
Score 1.9364611
Snippet Particle Swarm Optimization (PSO) is a population-based algorithm designed to find good solutions to optimization problems. Its characteristics have encouraged...
SourceID ieee
SourceType Publisher
StartPage 947
SubjectTerms Algorithm design and analysis
Benchmark testing
Erbium
Noise
Optimization
Particle swarm optimization
Resource management
Title Resampling in Particle Swarm Optimization
URI https://ieeexplore.ieee.org/document/6557669
WOSCitedRecordID wos000326235300123&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8aAXFDC-04MXEwvLPtrtmWA8GCS-wo2Udmo4sBge-ved7i6giRdv3b3spo-ZbzrzzQdwHcnEJ-sMlyYKuI8QuHKp5U4nUqMNnc5F-94e5GCQjkZqWIHbLRcGEfPiM2z7YZ7Lt3Oz9ldlHZEQOhaqClUpRcHV2t2nUBwTBFsr7AVoVVFcrwhBpqOc1CXJ9sZ0xDe9nsrncJO_DFSn1-_5gq-oXX7sl-pK7nTu6v_73UNo7dh7bLj1S0dQwawB9Y18AytPcwMOfvQibMLNEy61Ly_P3tk0Y8NyS7HnL72YsUeyLLOSstmC17v-S--elzoKfErgYMUJoqGNHYpIY5DqCQVF5OVDEwvsOo2JmTgXRzTGwDhltRCobGgwxTSMDGG0Y6hl8wxPgCF5extHPpmKscFkQgGXQwxdImNaY3EKTT8P44-iVca4nIKzv1-fw35YqEvwoHsBtdVijZewZz5X0-XiKl_fb35knsc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmqgXFDC-3YMXEwul2-1uzwSDEZEoGm6kdKeGA4vhoX_fdncBTbx46-5lN33MfNOZbz6Aaz8MXLJOk1D7lLgIgUgTxcSoIFQYM6NS0b63TtjtRoOB7BXgds2FQcS0-Axrbpjm8uOpXrqrsroILDoWcgu2A84ZzdhamxsVG8lQurbDToJWZuX10mLIaJDSukJrfbk95KtuT_kzW2Uwqaw3W01X8uXX8s_90l1J3c5d6X8_fADVDX_P66090yEUMClDaSXg4OXnuQz7P7oRVuDmGefKFZgn79448Xr5pvJevtRs4j1Z2zLJSZtVeL1r9ZttkispkLGFBwtiQRrG3KDwFdJIjWxYZP0801xgwygM9MgY7tsxUm1krIRAGTONEUbM1xalHUExmSZ4DB5afx9z36VTkWsMRjbkMojMBCG3qyxOoOLmYfiRNcsY5lNw-vfrK9ht9x87w8599-EM9limNUFo4xyKi9kSL2BHfy7G89llutbf-J6iDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Congress+on+Evolutionary+Computation&rft.atitle=Resampling+in+Particle+Swarm+Optimization&rft.au=Rada-Vilela%2C+Juan&rft.au=Mengjie+Zhang&rft.au=Johnston%2C+Mark&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781479904532&rft.issn=1089-778X&rft.spage=947&rft.epage=954&rft_id=info:doi/10.1109%2FCEC.2013.6557669&rft.externalDocID=6557669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon