M to 1 Joint Source-Channel Coding of Gaussian Sources via Dichotomy of the Input Space Based on Deep Learning
In this paper, we propose a deep neural network framework for Joint Source-Channel Coding of an m dimensional i.i.d. Gaussian source for transmission over a single additive white Gaussian noise channel with no delay. The framework employs two neural encoder-decoder pairs that learn to split the inpu...
Uloženo v:
| Vydáno v: | DCC (Los Alamitos, Calif.) s. 488 - 497 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.03.2019
|
| Témata: | |
| ISSN: | 2375-0359 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!