Generalized and modified ant algorithm for solving robot path planning problem

The task of planning trajectories for a mobile robot has received considerable attention in the research literature. The problem involves computing a collision-free path between a start point and a target point in environment of known obstacles. In this paper, we introduced the generalized and modif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 3rd IEEE International Conference on Computer Science and Information Technology Jg. 1; S. 643 - 646
Hauptverfasser: Maurya, Ritesh, Shukla, Anupam
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2010
Schlagworte:
ISBN:9781424455379, 1424455375
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The task of planning trajectories for a mobile robot has received considerable attention in the research literature. The problem involves computing a collision-free path between a start point and a target point in environment of known obstacles. In this paper, we introduced the generalized and modified ant algorithm for solving robot path planning, by the term generalized we mean ant can select either one of the 16, 24 or 32 neighbor points for its next movement as contrast to simple one in which only one of the eight neighborhoods can be selected by the ant. As per the general theory of the graph search algorithms, the increase in the number of neighborhood points make the solutions more optimal in terms of path length, but put a limitation on the execution time which increases drastically with an increase in the number of neighborhood points. Our simulation results show that there is a considerable decrease in the path length with the increase in the level of generalization, the time of execution however increases but the algorithm performance can be improved by modified ant algorithm in terms of execution time.
AbstractList The task of planning trajectories for a mobile robot has received considerable attention in the research literature. The problem involves computing a collision-free path between a start point and a target point in environment of known obstacles. In this paper, we introduced the generalized and modified ant algorithm for solving robot path planning, by the term generalized we mean ant can select either one of the 16, 24 or 32 neighbor points for its next movement as contrast to simple one in which only one of the eight neighborhoods can be selected by the ant. As per the general theory of the graph search algorithms, the increase in the number of neighborhood points make the solutions more optimal in terms of path length, but put a limitation on the execution time which increases drastically with an increase in the number of neighborhood points. Our simulation results show that there is a considerable decrease in the path length with the increase in the level of generalization, the time of execution however increases but the algorithm performance can be improved by modified ant algorithm in terms of execution time.
Author Maurya, Ritesh
Shukla, Anupam
Author_xml – sequence: 1
  givenname: Ritesh
  surname: Maurya
  fullname: Maurya, Ritesh
  email: Maurya123ritesh47@gmail.com
  organization: Dept. of Inf. Technol., ABV-Indian Inst. of Inf., Gwalior, India
– sequence: 2
  givenname: Anupam
  surname: Shukla
  fullname: Shukla, Anupam
  email: dranupamshukla@gmail.com
  organization: Dept. of Inf. Technol., ABV-Indian Inst. of Inf., Gwalior, India
BookMark eNpNkL1OwzAYRY2gErTkCbr4BVI-_8X2iCIokSoYKHPlxE5r5NhREiHB0xOgA3e5Ome4w12iq5iiQ2hNYEMI6LuqLF-r_YbCLIQouGTiAmVaKsIp50Jw0Jf_mUm9QEsKoDVTjNNrlI3jO8zhggpFb9Dz1kU3mOC_nMUmWtwl61v_CxM24ZgGP5063KYBjyl8-HjEQ6rThHsznXAfTIw_rp9lcN0tWrQmjC479wq9PT7sy6d897Ktyvtd7okUU64pa5QwwGsoGgetdsCskoZawuqaKdE0jDbMUl6AAUOMAl1rUUitgEtn2Qqt_3a9c-7QD74zw-fhfAn7BtYQVJA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSIT.2010.5564735
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781424455409
9781424455393
1424455405
1424455391
EndPage 646
ExternalDocumentID 5564735
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-923c85a04b06ce0f9e03d87a2d13bb385cc32c3d2460a0a1a809b956798047ed3
IEDL.DBID RIE
ISBN 9781424455379
1424455375
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393024000141&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:53:14 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009938342
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-923c85a04b06ce0f9e03d87a2d13bb385cc32c3d2460a0a1a809b956798047ed3
PageCount 4
ParticipantIDs ieee_primary_5564735
PublicationCentury 2000
PublicationDate 2010-July
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-July
PublicationDecade 2010
PublicationTitle 2010 3rd IEEE International Conference on Computer Science and Information Technology
PublicationTitleAbbrev ICCSIT
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452582
Score 1.4541346
Snippet The task of planning trajectories for a mobile robot has received considerable attention in the research literature. The problem involves computing a...
SourceID ieee
SourceType Publisher
StartPage 643
SubjectTerms Adaptation model
Ant colony Optimization
Combinatorial Optimization
Equations
Generalization Levels
Mathematical model
Metaheuristic
Modified ant algorithm
Motion Planning
Planning
Robot Navigation
Title Generalized and modified ant algorithm for solving robot path planning problem
URI https://ieeexplore.ieee.org/document/5564735
Volume 1
WOSCitedRecordID wos000393024000141&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27SwMxGA-1ODiptOKbDI6ezV3ec7HYpRSs0K3kdXpg78p5dfCvN7lLK4KLW74MIeQLfO_fD4C7jCnLaCiyGsESImiWqBTZxHjjLSTPCGO2JZvgs5lYLuW8B-73szDOubb5zD2EZVvLt5XZhlTZiFIWmHIPwAHnrJvV2udTAjQ4FdludotSzOkO0inKMqIOpUiOpuPx83TRtXbFY3_xq7TmZXL8v4udgOHPnB6c7y3QKei5cgBmEUm6-HIWqtLCdWWLvGiFBqr316oumrc19N4q9B8vJBRgXemqgYGdGG4iixGMVDND8DJ5XIyfksiakBTeFWgS77EZQRUiGjHjUC4dwlZwldkUa40FNV4PBluvBqSQSpVAUvsoiUuBCHcWn4F-WZXuHEBHkCUWa0yNJQHGJnWM59yHhNjolOQXYBDeYrXpgDFW8Rku_96-Akdd6T30ul6DflNv3Q04NJ9N8VHfttr8BoFDm3k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5zCnpS2cRvc_BoXdp89jwcG84ycMJuI00yLbh21M6Dv96kzSaCF295cwghb-D9fh4AbiMmNaOuyKoEC4igUSBDpANljbeIeUQY0zXZBE8SMZvFkxa4287CGGPq5jNz75Z1LV8Xau1SZT1KmWPK3QG7lJAINdNa24yKAwenItpMb1GKOd2AOnk59rhDIYp7o37_eTRtmrv8wb8YVmoDMzj839WOQPdnUg9OtjboGLRM3gGJx5LOvoyGMtdwWehskdVCBeX7a1Fm1dsSWn8V2q_nUgqwLNKigo6fGK48jxH0ZDNd8DJ4mPaHgedNCDLrDFSB9dmUoBKRFDFl0CI2CGvBZaRDnKZYUGU1obC2ikASyVAKFKc2TuKxQIQbjU9AOy9ycwqgIUgTjVNMlSYOyCY0jC-4DQqxSkOyOAMd9xbzVQONMffPcP739g3YH06fxvPxKHm8AAdNId51vl6CdlWuzRXYU59V9lFe15r9BsuznsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+3rd+IEEE+International+Conference+on+Computer+Science+and+Information+Technology&rft.atitle=Generalized+and+modified+ant+algorithm+for+solving+robot+path+planning+problem&rft.au=Maurya%2C+Ritesh&rft.au=Shukla%2C+Anupam&rft.date=2010-07-01&rft.pub=IEEE&rft.isbn=9781424455379&rft.volume=1&rft.spage=643&rft.epage=646&rft_id=info:doi/10.1109%2FICCSIT.2010.5564735&rft.externalDocID=5564735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424455379/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424455379/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424455379/sc.gif&client=summon&freeimage=true