The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems
Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This approach heavily relies on data from real-world scenarios to derive the necessary scenario information for testing. Measurement data should be c...
Uložené v:
| Vydané v: | Proceedings (IEEE Conference on Intelligent Transportation Systems) s. 2118 - 2125 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.11.2018
|
| Predmet: | |
| ISBN: | 9781728103211, 1728103215 |
| ISSN: | 2153-0017 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This approach heavily relies on data from real-world scenarios to derive the necessary scenario information for testing. Measurement data should be collected at a reasonable effort, contain naturalistic behavior of road users and include all data relevant for a description of the identified scenarios in sufficient quality. However, the current measurement methods fail to meet at least one of the requirements. Thus, we propose a novel method to measure data from an aerial perspective for scenario-based validation fulfilling the mentioned requirements. Furthermore, we provide a large-scale naturalistic vehicle trajectory dataset from German highways called highD. We evaluate the data in terms of quantity, variety and contained scenarios. Our dataset consists of 16.5 hours of measurements from six locations with 110 000 vehicles, a total driven distance of 45 000 km and 5600 recorded complete lane changes. The highD dataset is available online at: http://www.highD-dataset.com. |
|---|---|
| AbstractList | Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This approach heavily relies on data from real-world scenarios to derive the necessary scenario information for testing. Measurement data should be collected at a reasonable effort, contain naturalistic behavior of road users and include all data relevant for a description of the identified scenarios in sufficient quality. However, the current measurement methods fail to meet at least one of the requirements. Thus, we propose a novel method to measure data from an aerial perspective for scenario-based validation fulfilling the mentioned requirements. Furthermore, we provide a large-scale naturalistic vehicle trajectory dataset from German highways called highD. We evaluate the data in terms of quantity, variety and contained scenarios. Our dataset consists of 16.5 hours of measurements from six locations with 110 000 vehicles, a total driven distance of 45 000 km and 5600 recorded complete lane changes. The highD dataset is available online at: http://www.highD-dataset.com. |
| Author | Bock, Julian Kloeker, Laurent Eckstein, Lutz Krajewski, Robert |
| Author_xml | – sequence: 1 givenname: Robert surname: Krajewski fullname: Krajewski, Robert email: krajewski@ika.rwth-aachen.de organization: Automated Driving Department, Institute for Automotive Engineering, RWTH Aachen University, Aachen, Germany – sequence: 2 givenname: Julian surname: Bock fullname: Bock, Julian email: bock@ika.rwth-aachen.de organization: Automated Driving Department, Institute for Automotive Engineering, RWTH Aachen University, Aachen, Germany – sequence: 3 givenname: Laurent surname: Kloeker fullname: Kloeker, Laurent email: kloeker@ika.rwth-aachen.de organization: Automated Driving Department, Institute for Automotive Engineering, RWTH Aachen University, Aachen, Germany – sequence: 4 givenname: Lutz surname: Eckstein fullname: Eckstein, Lutz email: eckstein@ika.rwth-aachen.de organization: Automated Driving Department, Institute for Automotive Engineering, RWTH Aachen University, Aachen, Germany |
| BookMark | eNpVkE1OwzAQRs2fRCk9AGLjC6SM7Tq22VUttJUqWDR0W7nJpHHVJCh2QTkEdyaIsmA2I83TvE_6bshlVVdIyB2DIWNgHhbJajLkwPRQy9hIyc_IwCjNFNcMBBfynPQ4kyICYOriH2Psmgy830M3gutYQI98JQXSwu2KKZ3aYD2GRzqm06YL_TvQOqcvNhwbe3A-uJSusXDpAWnS2D2moW4celpXdIZNaSs672yftvU0rxu67p4yG1yHO80POrR0fAx1aQNmXZD7cNWOrlofsPS35Cq3B4-D0-6Tt-enZDKPlq-zxWS8jBxTMkQGeLxVI26ksBmI7UjJ3CAqZlg2YmBBG5AZAmTaZjIDjdZwJcQ2lbGWkIs-uf_1OkTcvDeutE27ORUqvgEtMmle |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ITSC.2018.8569552 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781728103235 1728103231 |
| EISSN | 2153-0017 |
| EndPage | 2125 |
| ExternalDocumentID | 8569552 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-9026b742953ad03b475f9ee7191d410a08905de00d8ad5d08ea92733bc56850f3 |
| IEDL.DBID | RIE |
| ISBN | 9781728103211 1728103215 |
| ISICitedReferencesCount | 1061 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457881302020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:53:23 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-9026b742953ad03b475f9ee7191d410a08905de00d8ad5d08ea92733bc56850f3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_8569552 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Nov. |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings (IEEE Conference on Intelligent Transportation Systems) |
| PublicationTitleAbbrev | ITSC |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000328630 |
| Score | 2.3550036 |
| Snippet | Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2118 |
| SubjectTerms | Drones Roads Safety Sensors Trajectory |
| Title | The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems |
| URI | https://ieeexplore.ieee.org/document/8569552 |
| WOSCitedRecordID | wos000457881302020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWg4gAXlhaxaw4cSbGTOLa5IcomoQoJqHpDdjwRRShBbQrqR_DP2EkoIHHhltiKk9gjz-J5bwg5lIZpxWQWcJQ6iIVJApVwFoRolBFRmPKqisLgRvT7cjhUtwvkaI6FQcQq-Qy7_rI6y7dFOvWhsmPJE8W523AXhRA1VmseT_G8cElEPXZLhNLTxDHeUDp93bPmVJNRdXx9f3fmE7tktxn0V3WVSrlcrP7vs9ZI5xulB7dz_bNOFjDfICs_CAbb5MNJAXhG4h70dOkUVnkCp9AbFzl-NUCRQV9X7BsVZzMM8MnLEjgt9lyF9J0vDUUOl34Pz8Enhrzr2QSctQsD91BdlMkP47teZnA6LQtnB6N1Lxr5eAU0tOgd8nBxfn92FTQFGIKRsyrKQDkHzTjfWfFIWxqZWPBMIQrn49mYUU2lotwipVZqyy2VqJUzhyKT8kRymkWbpJW7P9oiIKU2mRYqTGMVsyzSKGwaKqQm4lZhuE3afmIfX2uOjcdmTnf-bt4ly37takzgHmmV4ynuk6X0rRxNxgeVYHwC9L22Yw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6igvriHe-eBx-tJm3TJr6NzbnhHIJz-DaS5hQn0srsFH-E_9mk66aCL761CU3b5JBzyfm-Q8iJ0ExJJlKPo1BeGOvIkxFnno9a6jjwE15WUeh34m5XPDzI2zlyOsPCIGKZfIZn7rI8yzd5MnahsnPBI8m53XAXeBj6bILWmkVUHDNcFFCH3op94YjiGK9Inab3rDrXZFSet3t3dZfaJc6qYX_VVynVS3P1fx-2Rra-cXpwO9NA62QOsw2y8oNicJN8WjkAx0ncgIYqrMoqLqAGjVGe4bQB8hS6quTfKFmboY-PTprA6rGnMqhvvWnIM7hyu3gGLjXkXX28grV3oW8fmpRlcsO4rucPqI2L3FrCaOyLhi5iARUx-ha5b1726i2vKsHgDa1dUXjSumjaes-SB8rQQIcxTyVibL08EzKqqJCUG6TUCGW4oQKVtAZRoBMeCU7TYJvMZ_aPdggIoXSqYuknoQxZGiiMTeJLpDrgRqK_SzbdxA5eJiwbg2pO9_5uPiZLrd5NZ9Bpd6_3ybJbxwlC8IDMF6MxHpLF5K0Yvo6OSiH5Ap6uuao |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Conference+on+Intelligent+Transportation+Systems%29&rft.atitle=The+highD+Dataset%3A+A+Drone+Dataset+of+Naturalistic+Vehicle+Trajectories+on+German+Highways+for+Validation+of+Highly+Automated+Driving+Systems&rft.au=Krajewski%2C+Robert&rft.au=Bock%2C+Julian&rft.au=Kloeker%2C+Laurent&rft.au=Eckstein%2C+Lutz&rft.date=2018-11-01&rft.pub=IEEE&rft.isbn=9781728103211&rft.eissn=2153-0017&rft.spage=2118&rft.epage=2125&rft_id=info:doi/10.1109%2FITSC.2018.8569552&rft.externalDocID=8569552 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728103211/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728103211/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728103211/sc.gif&client=summon&freeimage=true |

