The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems

Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This approach heavily relies on data from real-world scenarios to derive the necessary scenario information for testing. Measurement data should be c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE Conference on Intelligent Transportation Systems) s. 2118 - 2125
Hlavní autori: Krajewski, Robert, Bock, Julian, Kloeker, Laurent, Eckstein, Lutz
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.11.2018
Predmet:
ISBN:9781728103211, 1728103215
ISSN:2153-0017
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This approach heavily relies on data from real-world scenarios to derive the necessary scenario information for testing. Measurement data should be collected at a reasonable effort, contain naturalistic behavior of road users and include all data relevant for a description of the identified scenarios in sufficient quality. However, the current measurement methods fail to meet at least one of the requirements. Thus, we propose a novel method to measure data from an aerial perspective for scenario-based validation fulfilling the mentioned requirements. Furthermore, we provide a large-scale naturalistic vehicle trajectory dataset from German highways called highD. We evaluate the data in terms of quantity, variety and contained scenarios. Our dataset consists of 16.5 hours of measurements from six locations with 110 000 vehicles, a total driven distance of 45 000 km and 5600 recorded complete lane changes. The highD dataset is available online at: http://www.highD-dataset.com.
AbstractList Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This approach heavily relies on data from real-world scenarios to derive the necessary scenario information for testing. Measurement data should be collected at a reasonable effort, contain naturalistic behavior of road users and include all data relevant for a description of the identified scenarios in sufficient quality. However, the current measurement methods fail to meet at least one of the requirements. Thus, we propose a novel method to measure data from an aerial perspective for scenario-based validation fulfilling the mentioned requirements. Furthermore, we provide a large-scale naturalistic vehicle trajectory dataset from German highways called highD. We evaluate the data in terms of quantity, variety and contained scenarios. Our dataset consists of 16.5 hours of measurements from six locations with 110 000 vehicles, a total driven distance of 45 000 km and 5600 recorded complete lane changes. The highD dataset is available online at: http://www.highD-dataset.com.
Author Bock, Julian
Kloeker, Laurent
Eckstein, Lutz
Krajewski, Robert
Author_xml – sequence: 1
  givenname: Robert
  surname: Krajewski
  fullname: Krajewski, Robert
  email: krajewski@ika.rwth-aachen.de
  organization: Automated Driving Department, Institute for Automotive Engineering, RWTH Aachen University, Aachen, Germany
– sequence: 2
  givenname: Julian
  surname: Bock
  fullname: Bock, Julian
  email: bock@ika.rwth-aachen.de
  organization: Automated Driving Department, Institute for Automotive Engineering, RWTH Aachen University, Aachen, Germany
– sequence: 3
  givenname: Laurent
  surname: Kloeker
  fullname: Kloeker, Laurent
  email: kloeker@ika.rwth-aachen.de
  organization: Automated Driving Department, Institute for Automotive Engineering, RWTH Aachen University, Aachen, Germany
– sequence: 4
  givenname: Lutz
  surname: Eckstein
  fullname: Eckstein, Lutz
  email: eckstein@ika.rwth-aachen.de
  organization: Automated Driving Department, Institute for Automotive Engineering, RWTH Aachen University, Aachen, Germany
BookMark eNpVkE1OwzAQRs2fRCk9AGLjC6SM7Tq22VUttJUqWDR0W7nJpHHVJCh2QTkEdyaIsmA2I83TvE_6bshlVVdIyB2DIWNgHhbJajLkwPRQy9hIyc_IwCjNFNcMBBfynPQ4kyICYOriH2Psmgy830M3gutYQI98JQXSwu2KKZ3aYD2GRzqm06YL_TvQOqcvNhwbe3A-uJSusXDpAWnS2D2moW4celpXdIZNaSs672yftvU0rxu67p4yG1yHO80POrR0fAx1aQNmXZD7cNWOrlofsPS35Cq3B4-D0-6Tt-enZDKPlq-zxWS8jBxTMkQGeLxVI26ksBmI7UjJ3CAqZlg2YmBBG5AZAmTaZjIDjdZwJcQ2lbGWkIs-uf_1OkTcvDeutE27ORUqvgEtMmle
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ITSC.2018.8569552
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728103235
1728103231
EISSN 2153-0017
EndPage 2125
ExternalDocumentID 8569552
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-9026b742953ad03b475f9ee7191d410a08905de00d8ad5d08ea92733bc56850f3
IEDL.DBID RIE
ISBN 9781728103211
1728103215
ISICitedReferencesCount 1061
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457881302020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:53:23 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-9026b742953ad03b475f9ee7191d410a08905de00d8ad5d08ea92733bc56850f3
PageCount 8
ParticipantIDs ieee_primary_8569552
PublicationCentury 2000
PublicationDate 2018-Nov.
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov.
PublicationDecade 2010
PublicationTitle Proceedings (IEEE Conference on Intelligent Transportation Systems)
PublicationTitleAbbrev ITSC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000328630
Score 2.3550036
Snippet Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This...
SourceID ieee
SourceType Publisher
StartPage 2118
SubjectTerms Drones
Roads
Safety
Sensors
Trajectory
Title The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems
URI https://ieeexplore.ieee.org/document/8569552
WOSCitedRecordID wos000457881302020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWg4gAXlhaxaw4cSbGTOLa5IcomoQoJqHpDdjwRRShBbQrqR_DP2EkoIHHhltiKk9gjz-J5bwg5lIZpxWQWcJQ6iIVJApVwFoRolBFRmPKqisLgRvT7cjhUtwvkaI6FQcQq-Qy7_rI6y7dFOvWhsmPJE8W523AXhRA1VmseT_G8cElEPXZLhNLTxDHeUDp93bPmVJNRdXx9f3fmE7tktxn0V3WVSrlcrP7vs9ZI5xulB7dz_bNOFjDfICs_CAbb5MNJAXhG4h70dOkUVnkCp9AbFzl-NUCRQV9X7BsVZzMM8MnLEjgt9lyF9J0vDUUOl34Pz8Enhrzr2QSctQsD91BdlMkP47teZnA6LQtnB6N1Lxr5eAU0tOgd8nBxfn92FTQFGIKRsyrKQDkHzTjfWfFIWxqZWPBMIQrn49mYUU2lotwipVZqyy2VqJUzhyKT8kRymkWbpJW7P9oiIKU2mRYqTGMVsyzSKGwaKqQm4lZhuE3afmIfX2uOjcdmTnf-bt4ly37takzgHmmV4ynuk6X0rRxNxgeVYHwC9L22Yw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6igvriHe-eBx-tJm3TJr6NzbnhHIJz-DaS5hQn0srsFH-E_9mk66aCL761CU3b5JBzyfm-Q8iJ0ExJJlKPo1BeGOvIkxFnno9a6jjwE15WUeh34m5XPDzI2zlyOsPCIGKZfIZn7rI8yzd5MnahsnPBI8m53XAXeBj6bILWmkVUHDNcFFCH3op94YjiGK9Inab3rDrXZFSet3t3dZfaJc6qYX_VVynVS3P1fx-2Rra-cXpwO9NA62QOsw2y8oNicJN8WjkAx0ncgIYqrMoqLqAGjVGe4bQB8hS6quTfKFmboY-PTprA6rGnMqhvvWnIM7hyu3gGLjXkXX28grV3oW8fmpRlcsO4rucPqI2L3FrCaOyLhi5iARUx-ha5b1726i2vKsHgDa1dUXjSumjaes-SB8rQQIcxTyVibL08EzKqqJCUG6TUCGW4oQKVtAZRoBMeCU7TYJvMZ_aPdggIoXSqYuknoQxZGiiMTeJLpDrgRqK_SzbdxA5eJiwbg2pO9_5uPiZLrd5NZ9Bpd6_3ybJbxwlC8IDMF6MxHpLF5K0Yvo6OSiH5Ap6uuao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Conference+on+Intelligent+Transportation+Systems%29&rft.atitle=The+highD+Dataset%3A+A+Drone+Dataset+of+Naturalistic+Vehicle+Trajectories+on+German+Highways+for+Validation+of+Highly+Automated+Driving+Systems&rft.au=Krajewski%2C+Robert&rft.au=Bock%2C+Julian&rft.au=Kloeker%2C+Laurent&rft.au=Eckstein%2C+Lutz&rft.date=2018-11-01&rft.pub=IEEE&rft.isbn=9781728103211&rft.eissn=2153-0017&rft.spage=2118&rft.epage=2125&rft_id=info:doi/10.1109%2FITSC.2018.8569552&rft.externalDocID=8569552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728103211/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728103211/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728103211/sc.gif&client=summon&freeimage=true