A complex-genetic algorithm for solving constrained optimization problems

Constrained optimization problems (COPs) are a kind of mathematic programming problem frequently encountered in the disciplines of science and engineering application. After analyzing weaknesses of existing constrained optimization evolutionary algorithms (COEAs), a novel improved algorithm called c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2008 International Conference on Machine Learning and Cybernetics Ročník 2; s. 869 - 873
Hlavní autoři: Ming-Song Li, Pu-Hua Zeng, Ruo-Wu Zhong, Hui-Ping Wang, Fen-Fen Zhang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2008
Témata:
ISBN:1424420954, 9781424420957
ISSN:2160-133X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Constrained optimization problems (COPs) are a kind of mathematic programming problem frequently encountered in the disciplines of science and engineering application. After analyzing weaknesses of existing constrained optimization evolutionary algorithms (COEAs), a novel improved algorithm called complex-GA, which converts COPs into multi-objective optimization problems (MOPs) and effectively combines multi-objective optimization concept with global and local search, was proposed to handle COPs. Complex-GA increases the speed of optima search noticeably by combining the advantages of the two methods and overcomes the disadvantages of them.
ISBN:1424420954
9781424420957
ISSN:2160-133X
DOI:10.1109/ICMLC.2008.4620526