A complex-genetic algorithm for solving constrained optimization problems
Constrained optimization problems (COPs) are a kind of mathematic programming problem frequently encountered in the disciplines of science and engineering application. After analyzing weaknesses of existing constrained optimization evolutionary algorithms (COEAs), a novel improved algorithm called c...
Uloženo v:
| Vydáno v: | 2008 International Conference on Machine Learning and Cybernetics Ročník 2; s. 869 - 873 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2008
|
| Témata: | |
| ISBN: | 1424420954, 9781424420957 |
| ISSN: | 2160-133X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Constrained optimization problems (COPs) are a kind of mathematic programming problem frequently encountered in the disciplines of science and engineering application. After analyzing weaknesses of existing constrained optimization evolutionary algorithms (COEAs), a novel improved algorithm called complex-GA, which converts COPs into multi-objective optimization problems (MOPs) and effectively combines multi-objective optimization concept with global and local search, was proposed to handle COPs. Complex-GA increases the speed of optima search noticeably by combining the advantages of the two methods and overcomes the disadvantages of them. |
|---|---|
| ISBN: | 1424420954 9781424420957 |
| ISSN: | 2160-133X |
| DOI: | 10.1109/ICMLC.2008.4620526 |

