A Fast Density Peaks Clustering Algorithm Based on Pre-Screening
Density peaks clustering algorithm (DPC) is a new density-based clustering algorithm proposed to obtain any shape of the clusters. It finds cluster centers according to the decision graph which drawn based on the density-distance. However, in the process of calculating local density and distance of...
Gespeichert in:
| Veröffentlicht in: | International Conference on Big Data and Smart Computing S. 513 - 516 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.01.2018
|
| Schlagworte: | |
| ISSN: | 2375-9356 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Density peaks clustering algorithm (DPC) is a new density-based clustering algorithm proposed to obtain any shape of the clusters. It finds cluster centers according to the decision graph which drawn based on the density-distance. However, in the process of calculating local density and distance of each point, the time complexity is O(n^2), which limits the application of DPC. In this paper, we propose a fast density peaks clustering algorithm based on pre-screening (PDPC), which can effectively reduce the calculation complexity on the basis of ensuring the accuracy of clustering. According to the uneven distribution of data sets, the novel pre-screening method is used to remove some points with sparse local density first, and then the cluster centers are selected by using the decision graph. Theoretical analysis and experimental results show that this algorithm can not only reduce the time complexity, but also cluster correctly. |
|---|---|
| AbstractList | Density peaks clustering algorithm (DPC) is a new density-based clustering algorithm proposed to obtain any shape of the clusters. It finds cluster centers according to the decision graph which drawn based on the density-distance. However, in the process of calculating local density and distance of each point, the time complexity is O(n^2), which limits the application of DPC. In this paper, we propose a fast density peaks clustering algorithm based on pre-screening (PDPC), which can effectively reduce the calculation complexity on the basis of ensuring the accuracy of clustering. According to the uneven distribution of data sets, the novel pre-screening method is used to remove some points with sparse local density first, and then the cluster centers are selected by using the decision graph. Theoretical analysis and experimental results show that this algorithm can not only reduce the time complexity, but also cluster correctly. |
| Author | Ding, Shifei Sun, Tongfeng Xu, Xiao |
| Author_xml | – sequence: 1 givenname: Xiao surname: Xu fullname: Xu, Xiao – sequence: 2 givenname: Shifei surname: Ding fullname: Ding, Shifei – sequence: 3 givenname: Tongfeng surname: Sun fullname: Sun, Tongfeng |
| BookMark | eNotzL1OwzAUQGGDQKItfQFY_AIJ13b8k400UECqRCVgrpz4Ohgap4rD0LenEkxn-XTm5CIOEQm5YZAzBuXdKnT10B9yDszkAGCKMzJnUhglVFHyczLjQsusFFJdkWVKXyfDSlVyDTNyX9G1TRN9wJjCdKRbtN-J1vufNOEYYkerfTeMYfrs6comdHSIdDti9taOiPEErsmlt_uEy_8uyMf68b1-zjavTy91tckC03LKjPOuFa5VwjnlG91q3TbAfckl08icbZoCuAVmeaG9dKIVHqCw3nDvDQqxILd_34CIu8MYejsed0YozVQhfgF1TExq |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BigComp.2018.00084 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1538636492 9781538636497 |
| EISSN | 2375-9356 |
| EndPage | 516 |
| ExternalDocumentID | 8367164 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-8dfdc3dc63dd6fb7c77cb02f92517e1dabb402a01a247f5d3c3f004af82ff8e33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435014000075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:50:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-8dfdc3dc63dd6fb7c77cb02f92517e1dabb402a01a247f5d3c3f004af82ff8e33 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_8367164 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jan |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan |
| PublicationDecade | 2010 |
| PublicationTitle | International Conference on Big Data and Smart Computing |
| PublicationTitleAbbrev | BIGCOMP |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001969270 |
| Score | 1.7285484 |
| Snippet | Density peaks clustering algorithm (DPC) is a new density-based clustering algorithm proposed to obtain any shape of the clusters. It finds cluster centers... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 513 |
| SubjectTerms | Clustering algorithms Computer science Data mining decision graph density peaks clustering algorithm large-scale data set pre screening Shape Time complexity |
| Title | A Fast Density Peaks Clustering Algorithm Based on Pre-Screening |
| URI | https://ieeexplore.ieee.org/document/8367164 |
| WOSCitedRecordID | wos000435014000075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQNTgRbxlgdGTNM4sZONtlAxoKoSD3WrHPtcIkqC2hSJf4-d9LGwsFmW7Uhn3Z3v8n13ANeBlGikjqg1hAG11g9phKpLE-bp0IYPPpZowrcnMRpFk0k8rsHNlguDiCX4DG_dsPyXr3O1cqmyTsS4e97XoS4Er7hau3xKzGNfeBtejBd3-unM6ZSDbzm8ZFXAdNdBpXQgw-b_Pn0A7R0Tj4y3PuYQapgdQXPTioGsNbMFdz0ylMuC3Ds8evFDrKX7WJLBfOXqINidpDef5Yu0eP8kfeu3NMkzey7SZ-VwN3ZBG16HDy-DR7pujkBT6_ELGmmjFdOKM625SYQSQiWeb2JXgwy7WiaJDQ2l15V-IEyomWLGKoQ0kW9MhIwdQyPLMzwBYqMGxUWsmIc8CCWTqBkaY2zkbDjGySm0nECmX1X9i-laFmd_T5_DvpN4laa4gEaxWOEl7KnvIl0urspL-wW7QJnv |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gmugTKhi_7YOPVsY69vEmoAQjEhLR8Ea69oqLuJkxTPzvbceAF198a5q2S665u97td78DuHY4R8WlT7UhdKi2fkh9FA0aMks2dfhgY44mfOt7g4E_HgfDEtysa2EQMQef4a0Z5v_yZSIWJlVW95lrnvdbsG06ZxXVWpuMSuAGtmetKmOsoN6OpkarDIDLICaXFKabHiq5C-lW_vfxfahtavHIcO1lDqCE8SFUVs0YSKGbVbhrkS6fZ-TeINKzH6Jt3cecdGYLw4Sgd5LWbJqkUfb-Sdrac0mSxPpcpC_CIG_0ghq8dh9GnR4t2iPQSPv8jPpSScGkcJmUrgo94XkitGwVGBYybEgehjo45FaD246nmpIJprRKcOXbSvnI2BGU4yTGYyA6bhCuFwhmoes0OeMoGSqldOysXAzCE6gagUy-lgwYk0IWp39PX8Fub_Tcn_QfB09nsGekv0xanEM5Sxd4ATviO4vm6WV-gb_vhp04 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=A+Fast+Density+Peaks+Clustering+Algorithm+Based+on+Pre-Screening&rft.au=Xu%2C+Xiao&rft.au=Ding%2C+Shifei&rft.au=Sun%2C+Tongfeng&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=513&rft.epage=516&rft_id=info:doi/10.1109%2FBigComp.2018.00084&rft.externalDocID=8367164 |