Frustum PointNets for 3D Object Detection from RGB-D Data
In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challeng...
Uložené v:
| Vydané v: | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition s. 918 - 927 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2018
|
| Predmet: | |
| ISSN: | 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability. |
|---|---|
| AbstractList | In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability. |
| Author | Qi, Charles R. Guibas, Leonidas J. Liu, Wei Wu, Chenxia Su, Hao |
| Author_xml | – sequence: 1 givenname: Charles R. surname: Qi fullname: Qi, Charles R. – sequence: 2 givenname: Wei surname: Liu fullname: Liu, Wei – sequence: 3 givenname: Chenxia surname: Wu fullname: Wu, Chenxia – sequence: 4 givenname: Hao surname: Su fullname: Su, Hao – sequence: 5 givenname: Leonidas J. surname: Guibas fullname: Guibas, Leonidas J. |
| BookMark | eNotzE1Pg0AQANDVaGKtnD142T8AzuwXs0cFW00a2zTqtVlgSGgEDGwP_ntN9PRu71pcDOPAQtwiZIjg74uP3T5TgJQBIKgzkfic0Gpyzijw52KB4HTqPPorkczzEQCUI03GLoRfTac5nnq5G7shvnKcZTtOUpdyWx25jrLk-Es3DrKdxl7u149pKcsQw424bMPnzMm_S_G-enorntPNdv1SPGzSDnMbU6pa7Wttbe40KNNYbtkRcEPe6FpjqExgDJ5yS-TRMlBbG19hsLpuVK2X4u7v7Zj58DV1fZi-D2RzUgD6B4y8RxU |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2018.00102 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781538664209 1538664208 |
| EISSN | 1063-6919 |
| EndPage | 927 |
| ExternalDocumentID | 8578200 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i175t-8bf39c355763024d5efe680ed8943c31ab4ae1a987588915e08fc49b1a53cd2c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1911 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457843601005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:52:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-8bf39c355763024d5efe680ed8943c31ab4ae1a987588915e08fc49b1a53cd2c3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_8578200 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jun |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002683845 ssj0003211698 |
| Score | 2.6401565 |
| Snippet | In this work, we study 3D object detection from RGBD data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 918 |
| SubjectTerms | Detectors Image segmentation Object detection Proposals Three-dimensional displays Two dimensional displays |
| Title | Frustum PointNets for 3D Object Detection from RGB-D Data |
| URI | https://ieeexplore.ieee.org/document/8578200 |
| WOSCitedRecordID | wos000457843601005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcDER4v4lgdGTOO6ie2VhsKASlRB1a3yx0XqQIpal9-PL40KAwtbnMk6O3l35_eeCbnVPtMqAhPzXlg20NawuEs0MxpE6oSRoma7T1_keKxmM120yN1OCwMANfkM7vGxPsv3S7fBVllPofd6Egv0PSnlVqu166f0MyVUc0KGYxErmziNxs2HJ7o3nBYT5HIheZJjG-XXdSo1mowO_zePI9L9keXRYgc4x6QF1Qk5bPJI2nyl6w7RIxRSbD5osVxUYQxhTWNqSkVOXy22XWgOoWZgVRTVJXTy9MBymptguuR99Pg2fGbNFQlsEXE_MGVLoV3MGeJvIqKtT6GETCXg0VbdCW7swAA3OlYlSmmeQqJKF1eEm1Q433filLSrZQVnhDqZWadTablCFzGpBqVHczurY6HZB3NOOhiJ-efWBWPeBOHi79eX5ABDvSVVXZF2WG3gmuy7r7BYr27qpfsGZuaWAw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWqggRTgRbxjQdGTOM4H_ZKQymihKgqVbfKHxepQ1PUpvx-7DQqDCxscSbr7OTdnd97RuhOmEhwC0zEGKZIIJQkdpcIIgWwUDMZs4rtPhnGacqnU5E10P1OCwMAFfkMHtxjdZZvlnrjWmVd7rzXPVug74VB4NOtWmvXUfEjznh9RubGzNY2diK1nw_1RLc3yUaOzeXok9Q1Un5dqFLhSb_1v5kcoc6PMA9nO8g5Rg0oTlCrziRx_Z2u20j0nZRis8DZcl6UKZRrbJNTzBL8rlzjBSdQVhysAjt9CR49P5IEJ7KUHfTRfxr3BqS-JIHMLfKXhKucCW2zBvujsHhrQsgh4h4YZ6yuGZUqkEClsHUJ54KG4PFc2zWhMmTa-JqdomaxLOAMYR1HSoswVpQ7H7GYB7lx9nZK2FLTB3mO2i4Ss8-tD8asDsLF369v0cFg_DacDV_S10t06MK-pVhdoWa52sA12tdf5Xy9uqmW8Rtp3ZlK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Frustum+PointNets+for+3D+Object+Detection+from+RGB-D+Data&rft.au=Qi%2C+Charles+R.&rft.au=Liu%2C+Wei&rft.au=Wu%2C+Chenxia&rft.au=Su%2C+Hao&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=918&rft.epage=927&rft_id=info:doi/10.1109%2FCVPR.2018.00102&rft.externalDocID=8578200 |