Tensor non-local low-rank regularization for recovering compressed hyperspectral images

Sparsity-based methods have been widely used in hyperspectral imagery compression recovery (HSI-CR). However, most of the available HSI-CR methods work on vector space by vectorizing hyperspectral cubes in spatial and spectral domain, which will destroy spatial and spectral correlation and result in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2017 IEEE International Conference on Image Processing (ICIP) s. 3046 - 3050
Hlavní autori: Zhao, Yongqiang, Xue, Jize, Hao, Jinglei
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.09.2017
Predmet:
ISSN:2381-8549
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sparsity-based methods have been widely used in hyperspectral imagery compression recovery (HSI-CR). However, most of the available HSI-CR methods work on vector space by vectorizing hyperspectral cubes in spatial and spectral domain, which will destroy spatial and spectral correlation and result in spatial and spectral information distortion in the recovery. At the same time, vectorization also make HSI's intrinsic structure sparsity cannot be utilized adequately. In this paper, a tensor non-local low-rank regularization (TNLR) approach is proposed to exploit essential structured sparsity and explore its advantages for CR of hyperspectral imagery. Specifically, a tensor nuclear norm penalty function is utilized as tensor low-rank regularization term to describe the spatial-and-spectral correlation hidden in HSI. To further improve the computational efficiency of the proposed algorithm, a fast implementation algorithm is developed by using the alternative direction multiplier method (ADMM) technique. Experimental results are shown that the proposed TNLR-CR algorithm can significantly outperform existing state-of-the-art CR techniques for hyperspectral image recovery.
AbstractList Sparsity-based methods have been widely used in hyperspectral imagery compression recovery (HSI-CR). However, most of the available HSI-CR methods work on vector space by vectorizing hyperspectral cubes in spatial and spectral domain, which will destroy spatial and spectral correlation and result in spatial and spectral information distortion in the recovery. At the same time, vectorization also make HSI's intrinsic structure sparsity cannot be utilized adequately. In this paper, a tensor non-local low-rank regularization (TNLR) approach is proposed to exploit essential structured sparsity and explore its advantages for CR of hyperspectral imagery. Specifically, a tensor nuclear norm penalty function is utilized as tensor low-rank regularization term to describe the spatial-and-spectral correlation hidden in HSI. To further improve the computational efficiency of the proposed algorithm, a fast implementation algorithm is developed by using the alternative direction multiplier method (ADMM) technique. Experimental results are shown that the proposed TNLR-CR algorithm can significantly outperform existing state-of-the-art CR techniques for hyperspectral image recovery.
Author Hao, Jinglei
Xue, Jize
Zhao, Yongqiang
Author_xml – sequence: 1
  givenname: Yongqiang
  surname: Zhao
  fullname: Zhao, Yongqiang
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
– sequence: 2
  givenname: Jize
  surname: Xue
  fullname: Xue, Jize
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
– sequence: 3
  givenname: Jinglei
  surname: Hao
  fullname: Hao, Jinglei
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
BookMark eNotkM1OwzAQhA0Cibb0ARCXvECC145r-4gifipVgkMRx2pJ1iGQ2pEdQOXpiURPc5n5ZjRzduaDJ8augBcA3N6sq_VzITjowgi7MqU4YUurDShuuQCtzCmbCWkgN6q0F2ye0gfnk1_CjL1uyacQswmZ96HGPuvDTx7Rf2aR2q8eY_eLYxd85iZXpDp8U-x8m9VhP0RKiZrs_TBQTAPVY5zy3R5bSpfs3GGfaHnUBXu5v9tWj_nm6WFd3W7ybho25sYiCmyM46J0ZakbDegUWA4OaCUbBag0NG9GghLcgVCSJDjBERtrrJALdv3P7YhoN8SpPR52xx_kH85wVHA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2017.8296842
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781509021758
1509021752
EISSN 2381-8549
EndPage 3050
ExternalDocumentID 8296842
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-89aa2ad8f024f447d71af51901f1e63d51a571db831520f1253e31f20aad98923
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428410703035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:52:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-89aa2ad8f024f447d71af51901f1e63d51a571db831520f1253e31f20aad98923
PageCount 5
ParticipantIDs ieee_primary_8296842
PublicationCentury 2000
PublicationDate 2017-Sept.
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
ssj0002269320
Score 2.014639
Snippet Sparsity-based methods have been widely used in hyperspectral imagery compression recovery (HSI-CR). However, most of the available HSI-CR methods work on...
SourceID ieee
SourceType Publisher
StartPage 3046
SubjectTerms alternative direction multiplier method
compression recovery
Correlation
Hyperspectral image
Hyperspectral imaging
Image coding
Image reconstruction
Matrix decomposition
non-local self-similarity
structured sparsity
Tensile stress
tensor low-rank approximation
Three-dimensional displays
Title Tensor non-local low-rank regularization for recovering compressed hyperspectral images
URI https://ieeexplore.ieee.org/document/8296842
WOSCitedRecordID wos000428410703035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8eAJFYzv9ODRhX10aXsmEkkM4YDKjRTaRhIVswv4953pNmtMvHjbbLJN08d-37y-AbhNlDEkGxYJa13EV9LhncOzrBBq8YRwnvt2b8-PYjKR87maNuCuroWx1vrkM9ujRx_LN5vVjlxlfZkqChs1oSnEoKrVqv0pSCOQisS1sUU6MiGKmcSqPx6Op5TIJXphkF_dVDyYjNr_m8YRdH-q8ti0xptjaNiPE2gHGsnCJS078DJD03RTMDTsIw9V7G3zFVFzdlb4zvNFqL1kSFgZWcR7r0fIKL3ca4kb9ormaVWFWeD363f865RdeBrdz4YPUeifEK2RFGwjqbROtZEOcdhxLoxItMuJAbjEDjKTJzoXiVnKDEE8dkh1yCPq0lhroyQyv1No4VTtGTBuebZUBGT5ksdZqrVD8MuV4lpkwsXn0KF1WnxWEhmLsEQXf7--hEPaiipV6wpa22Jnr-Fgtd-uy-LG7-s3Psiimg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgIxFL1BNNEVKhjfduHSQmemtdM1kUBEwgKVHSm0jSQoZnj4-952JmNM3LibTDJN08ecc1_nAtxGyhgvG0altY7yWerwzuFZVgi1eEI4F6Hd20tfDgbpeKyGFbgra2GstSH5zDb9Y4jlm-Vs411lrTRWPmy0A7uC85jl1VqlRwWJBJIRVppbXkmmiGNGTLV67d7Qp3LJZjHMr34qAU46tf9N5BAaP3V5ZFgizhFU7Mcx1AoiSYpruqrD6wiN02VG0LSnAazIYvlFfXt2koXe81lRfUmQshJvE2-DIiHxCeZBTdyQNzRQ8zrMDL-fv-N_Z9WA587DqN2lRQcFOkdasKap0jrWJnWIxI5zaWSknfAcwEX2PjEi0kJGZpomCOPMIdnxPlEXM62NSpH7nUAVp2pPgXDLk6nyUCamnCWx1g7hTyjFtUykY2dQ9-s0-cxFMibFEp3__foG9rujp_6k3xs8XsCB35Y8cesSqutsY69gb7Zdz1fZddjjb-JGpeE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Tensor+non-local+low-rank+regularization+for+recovering+compressed+hyperspectral+images&rft.au=Zhao%2C+Yongqiang&rft.au=Xue%2C+Jize&rft.au=Hao%2C+Jinglei&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3046&rft.epage=3050&rft_id=info:doi/10.1109%2FICIP.2017.8296842&rft.externalDocID=8296842