Tensor non-local low-rank regularization for recovering compressed hyperspectral images
Sparsity-based methods have been widely used in hyperspectral imagery compression recovery (HSI-CR). However, most of the available HSI-CR methods work on vector space by vectorizing hyperspectral cubes in spatial and spectral domain, which will destroy spatial and spectral correlation and result in...
Uložené v:
| Vydané v: | 2017 IEEE International Conference on Image Processing (ICIP) s. 3046 - 3050 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.09.2017
|
| Predmet: | |
| ISSN: | 2381-8549 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Sparsity-based methods have been widely used in hyperspectral imagery compression recovery (HSI-CR). However, most of the available HSI-CR methods work on vector space by vectorizing hyperspectral cubes in spatial and spectral domain, which will destroy spatial and spectral correlation and result in spatial and spectral information distortion in the recovery. At the same time, vectorization also make HSI's intrinsic structure sparsity cannot be utilized adequately. In this paper, a tensor non-local low-rank regularization (TNLR) approach is proposed to exploit essential structured sparsity and explore its advantages for CR of hyperspectral imagery. Specifically, a tensor nuclear norm penalty function is utilized as tensor low-rank regularization term to describe the spatial-and-spectral correlation hidden in HSI. To further improve the computational efficiency of the proposed algorithm, a fast implementation algorithm is developed by using the alternative direction multiplier method (ADMM) technique. Experimental results are shown that the proposed TNLR-CR algorithm can significantly outperform existing state-of-the-art CR techniques for hyperspectral image recovery. |
|---|---|
| AbstractList | Sparsity-based methods have been widely used in hyperspectral imagery compression recovery (HSI-CR). However, most of the available HSI-CR methods work on vector space by vectorizing hyperspectral cubes in spatial and spectral domain, which will destroy spatial and spectral correlation and result in spatial and spectral information distortion in the recovery. At the same time, vectorization also make HSI's intrinsic structure sparsity cannot be utilized adequately. In this paper, a tensor non-local low-rank regularization (TNLR) approach is proposed to exploit essential structured sparsity and explore its advantages for CR of hyperspectral imagery. Specifically, a tensor nuclear norm penalty function is utilized as tensor low-rank regularization term to describe the spatial-and-spectral correlation hidden in HSI. To further improve the computational efficiency of the proposed algorithm, a fast implementation algorithm is developed by using the alternative direction multiplier method (ADMM) technique. Experimental results are shown that the proposed TNLR-CR algorithm can significantly outperform existing state-of-the-art CR techniques for hyperspectral image recovery. |
| Author | Hao, Jinglei Xue, Jize Zhao, Yongqiang |
| Author_xml | – sequence: 1 givenname: Yongqiang surname: Zhao fullname: Zhao, Yongqiang organization: School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China – sequence: 2 givenname: Jize surname: Xue fullname: Xue, Jize organization: School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China – sequence: 3 givenname: Jinglei surname: Hao fullname: Hao, Jinglei organization: School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China |
| BookMark | eNotkM1OwzAQhA0Cibb0ARCXvECC145r-4gifipVgkMRx2pJ1iGQ2pEdQOXpiURPc5n5ZjRzduaDJ8augBcA3N6sq_VzITjowgi7MqU4YUurDShuuQCtzCmbCWkgN6q0F2ye0gfnk1_CjL1uyacQswmZ96HGPuvDTx7Rf2aR2q8eY_eLYxd85iZXpDp8U-x8m9VhP0RKiZrs_TBQTAPVY5zy3R5bSpfs3GGfaHnUBXu5v9tWj_nm6WFd3W7ybho25sYiCmyM46J0ZakbDegUWA4OaCUbBag0NG9GghLcgVCSJDjBERtrrJALdv3P7YhoN8SpPR52xx_kH85wVHA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICIP.2017.8296842 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781509021758 1509021752 |
| EISSN | 2381-8549 |
| EndPage | 3050 |
| ExternalDocumentID | 8296842 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-89aa2ad8f024f447d71af51901f1e63d51a571db831520f1253e31f20aad98923 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428410703035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:52:34 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-89aa2ad8f024f447d71af51901f1e63d51a571db831520f1253e31f20aad98923 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8296842 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Sept. |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE International Conference on Image Processing (ICIP) |
| PublicationTitleAbbrev | ICIP |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020131 ssj0002269320 |
| Score | 2.014639 |
| Snippet | Sparsity-based methods have been widely used in hyperspectral imagery compression recovery (HSI-CR). However, most of the available HSI-CR methods work on... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3046 |
| SubjectTerms | alternative direction multiplier method compression recovery Correlation Hyperspectral image Hyperspectral imaging Image coding Image reconstruction Matrix decomposition non-local self-similarity structured sparsity Tensile stress tensor low-rank approximation Three-dimensional displays |
| Title | Tensor non-local low-rank regularization for recovering compressed hyperspectral images |
| URI | https://ieeexplore.ieee.org/document/8296842 |
| WOSCitedRecordID | wos000428410703035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8eAJFYzv9ODRhX10aXsmEkkM4YDKjRTaRhIVswv4953pNmtMvHjbbLJN08d-37y-AbhNlDEkGxYJa13EV9LhncOzrBBq8YRwnvt2b8-PYjKR87maNuCuroWx1vrkM9ujRx_LN5vVjlxlfZkqChs1oSnEoKrVqv0pSCOQisS1sUU6MiGKmcSqPx6Op5TIJXphkF_dVDyYjNr_m8YRdH-q8ti0xptjaNiPE2gHGsnCJS078DJD03RTMDTsIw9V7G3zFVFzdlb4zvNFqL1kSFgZWcR7r0fIKL3ca4kb9ormaVWFWeD363f865RdeBrdz4YPUeifEK2RFGwjqbROtZEOcdhxLoxItMuJAbjEDjKTJzoXiVnKDEE8dkh1yCPq0lhroyQyv1No4VTtGTBuebZUBGT5ksdZqrVD8MuV4lpkwsXn0KF1WnxWEhmLsEQXf7--hEPaiipV6wpa22Jnr-Fgtd-uy-LG7-s3Psiimg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgIxFL1BNNEVKhjfduHSQmemtdM1kUBEwgKVHSm0jSQoZnj4-952JmNM3LibTDJN08ecc1_nAtxGyhgvG0altY7yWerwzuFZVgi1eEI4F6Hd20tfDgbpeKyGFbgra2GstSH5zDb9Y4jlm-Vs411lrTRWPmy0A7uC85jl1VqlRwWJBJIRVppbXkmmiGNGTLV67d7Qp3LJZjHMr34qAU46tf9N5BAaP3V5ZFgizhFU7Mcx1AoiSYpruqrD6wiN02VG0LSnAazIYvlFfXt2koXe81lRfUmQshJvE2-DIiHxCeZBTdyQNzRQ8zrMDL-fv-N_Z9WA587DqN2lRQcFOkdasKap0jrWJnWIxI5zaWSknfAcwEX2PjEi0kJGZpomCOPMIdnxPlEXM62NSpH7nUAVp2pPgXDLk6nyUCamnCWx1g7hTyjFtUykY2dQ9-s0-cxFMibFEp3__foG9rujp_6k3xs8XsCB35Y8cesSqutsY69gb7Zdz1fZddjjb-JGpeE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Tensor+non-local+low-rank+regularization+for+recovering+compressed+hyperspectral+images&rft.au=Zhao%2C+Yongqiang&rft.au=Xue%2C+Jize&rft.au=Hao%2C+Jinglei&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3046&rft.epage=3050&rft_id=info:doi/10.1109%2FICIP.2017.8296842&rft.externalDocID=8296842 |