GP-GPIS-OPT: Grasp planning with shape uncertainty using Gaussian process implicit surfaces and Sequential Convex Programming
Computing grasps for an object is challenging when the object geometry is not known precisely. In this paper, we explore the use of Gaussian process implicit surfaces (GPISs) to represent shape uncertainty from RGBD point cloud observations of objects. We study the use of GPIS representations to sel...
Saved in:
| Published in: | Proceedings - IEEE International Conference on Robotics and Automation pp. 4919 - 4926 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.05.2015
|
| Subjects: | |
| ISSN: | 1050-4729 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Computing grasps for an object is challenging when the object geometry is not known precisely. In this paper, we explore the use of Gaussian process implicit surfaces (GPISs) to represent shape uncertainty from RGBD point cloud observations of objects. We study the use of GPIS representations to select grasps on previously unknown objects, measuring grasp quality by the probability of force closure. Our main contribution is GP-GPIS-OPT, an algorithm for computing grasps for parallel-jaw grippers on 2D GPIS object representations. Specifically, our method optimizes an approximation to the probability of force closure subject to antipodal constraints on the parallel jaws using Sequential Convex Programming (SCP). We also introduce GPIS-Blur, a method for visualizing 2D GPIS models based on blending shape samples from a GPIS. We test the algorithm on a set of 8 planar objects with transparency, translucency, and specularity. Our experiments suggest that GP-GPIS-OPT computes grasps with higher probability of force closure than a planner that does not consider shape uncertainty on our test objects and may converge to a grasp plan up to 5.7×faster than using Monte-Carlo integration, a common method for grasp planning under shape uncertainty. Furthermore, initial experiments on the Willow Garage PR2 robot suggest that grasps selected with GP-GPIS-OPT are up to 90% more successful than those planned assuming a deterministic shape. Our dataset, code, and videos of our experiments are available at http://rll.berkeley.edu/icra2015grasping/. |
|---|---|
| AbstractList | Computing grasps for an object is challenging when the object geometry is not known precisely. In this paper, we explore the use of Gaussian process implicit surfaces (GPISs) to represent shape uncertainty from RGBD point cloud observations of objects. We study the use of GPIS representations to select grasps on previously unknown objects, measuring grasp quality by the probability of force closure. Our main contribution is GP-GPIS-OPT, an algorithm for computing grasps for parallel-jaw grippers on 2D GPIS object representations. Specifically, our method optimizes an approximation to the probability of force closure subject to antipodal constraints on the parallel jaws using Sequential Convex Programming (SCP). We also introduce GPIS-Blur, a method for visualizing 2D GPIS models based on blending shape samples from a GPIS. We test the algorithm on a set of 8 planar objects with transparency, translucency, and specularity. Our experiments suggest that GP-GPIS-OPT computes grasps with higher probability of force closure than a planner that does not consider shape uncertainty on our test objects and may converge to a grasp plan up to 5.7×faster than using Monte-Carlo integration, a common method for grasp planning under shape uncertainty. Furthermore, initial experiments on the Willow Garage PR2 robot suggest that grasps selected with GP-GPIS-OPT are up to 90% more successful than those planned assuming a deterministic shape. Our dataset, code, and videos of our experiments are available at http://rll.berkeley.edu/icra2015grasping/. |
| Author | Patil, Sachin van den Berg, Jur Mahler, Jeffrey Kehoe, Ben Ciocarlie, Matei Abbeel, Pieter Goldberg, Ken |
| Author_xml | – sequence: 1 givenname: Jeffrey surname: Mahler fullname: Mahler, Jeffrey email: jmahler@berkeley.edu organization: Dept. of EECS, Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 2 givenname: Sachin surname: Patil fullname: Patil, Sachin email: sachinpatil@berkeley.edu organization: Dept. of EECS, Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 3 givenname: Ben surname: Kehoe fullname: Kehoe, Ben email: benk@berkeley.edu organization: Dept. of ME, Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 4 givenname: Jur surname: van den Berg fullname: van den Berg, Jur email: jurvandenberg@gmail.com organization: Google Inc., CA, USA – sequence: 5 givenname: Matei surname: Ciocarlie fullname: Ciocarlie, Matei email: matei.ciocarlie@columbia.edu organization: Dept. of ME, Colombia Univ., NY, USA – sequence: 6 givenname: Pieter surname: Abbeel fullname: Abbeel, Pieter email: pabbeel@berkeley.edu organization: Dept. of EECS, Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 7 givenname: Ken surname: Goldberg fullname: Goldberg, Ken email: goldberg@berkeley.edu organization: Dept. of EECS, Univ. of California, Berkeley, Berkeley, CA, USA |
| BookMark | eNotkNFKwzAYRiNMcJt7APEmL9CZNE3TeDeK1sFgxc3r8dv-3SJtWpNWtwvf3Ym7-uAcOBffhIxsa5GQO87mnDP9sExfF_OQcTlXXOgkCa_ITKuER0rrWIciGpExZ5IFkQr1DZl4_8EYEyKOx-Qny4MsX26Cdb59pJkD39GuBmuN3dNv0x-oP0CHdLAFuh6M7U908H8yg8F7A5Z2ri3Qe2qarjaF6akfXAVnRMGWdIOfA9reQE3T1n7hkeau3TtomnPkllxXUHucXXZK3p6ftulLsFpny3SxCgxXsg8SBaBLQMFRyrgUJWKiAQoWRshkFUOoKilkiSWCLuKoQBZJySGJikS9cyWm5P6_axBx1znTgDvtLm-JX2RfYoU |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICRA.2015.7139882 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781479969234 1479969230 |
| EndPage | 4926 |
| ExternalDocumentID | 7139882 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-87aa9dae31e556d3dee89aac024e05f6a27f535dedea9c64ce04551a84c87b173 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370974904125&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1050-4729 |
| IngestDate | Wed Aug 27 02:17:02 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-87aa9dae31e556d3dee89aac024e05f6a27f535dedea9c64ce04551a84c87b173 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_7139882 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-May |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-May |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings - IEEE International Conference on Robotics and Automation |
| PublicationTitleAbbrev | ICRA |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003366 |
| Score | 1.8247038 |
| Snippet | Computing grasps for an object is challenging when the object geometry is not known precisely. In this paper, we explore the use of Gaussian process implicit... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 4919 |
| SubjectTerms | Approximation methods Force Grippers Sensors Shape Three-dimensional displays Uncertainty |
| Title | GP-GPIS-OPT: Grasp planning with shape uncertainty using Gaussian process implicit surfaces and Sequential Convex Programming |
| URI | https://ieeexplore.ieee.org/document/7139882 |
| WOSCitedRecordID | wos000370974904125&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDNjzoxR-b-JscPJqtXZu18SbDzYHM4qbsNl6TVy1oV9ZO9OD_btKWqeDFW-khhATe-ybv880j5FwIDqGNNhNSSeb6bpeFOiQwrUXAAlCeKLwwj7feeOzPZiKokYu1FwYRC_gM2-azqOWrhVyZq7KOPlAJrQjrpO55XunVWkddxynqklouWMzVirGqYNqW6Iz691cG4uLtaoBfnVSKRDLY_t8Udkjr25FHg3Wu2SU1TPbI1o_HBJvkcxiwYTCasLtgekmHS8hSmlYtiai5bqXZM6RIdSIrMYD8gxrq_YkOYZUZLyVNS9cAjQvMPM5ptlpGhtmikCg6KahrHRFeaN-w6u9mRgbuetWDtMjD4Hrav2FVcwUWa8WQ6ygIIBSgYyPnPeUoRF8ASJ2z0eJRD7pexB2uUCEI2XMlavHHbfBd6Xuh7Tn7pJEsEjwg1BwZHdTKpxdZrhO6ArjwdXDohsLoO35ImmYh52n5fsa8WsOjv38fk02zVyVUeEIa-XKFp2RDvuVxtjwrNv0LK2GuAA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PT8IwFMcbRBP14g8w_rYHjxY21rLVmyHyIyIugoYbeVsfSqKwsGH04P9uuy2oiRdvyw5N0y3vfdv3-fYRci6lgMBGm8lQhYx7vMYCHRKY1iJgAShXpl6Yx67b63nDofQL5GLphUHEFD7DinlMa_lqFi7MUVlVb6ikVoQrZFVwXrMzt9Yy7jpOWpnUgsFiXGvGvIZpW7LaadxfGYxLVPIhfvVSSVNJc-t_k9gm5W9PHvWX2WaHFHC6SzZ_XCdYIp8tn7X8Tp_d-YNL2ppDHNEob0pEzYErjZ8hQqpTWQYCJB_UcO9PtAWL2LgpaZT5BugkBc0nCY0X87GhtihMFe2n3LWOCS-0YWj1dzMjg3e96kHK5KF5PWi0Wd5egU20Zkh0HASQCtCxUYi6chSiJwFCnbXREuM61NyxcIRChSDDOg9Ryz9hg8dDzw1s19kjxelsivuEmk2jg1r71McWdwIuQUhPh4daII3CEwekZBZyFGU3aIzyNTz8-_UZWW8Pbrujbqd3c0Q2zHfLEMNjUkzmCzwha-FbMonnp-kP8AVkn7FH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Conference+on+Robotics+and+Automation&rft.atitle=GP-GPIS-OPT%3A+Grasp+planning+with+shape+uncertainty+using+Gaussian+process+implicit+surfaces+and+Sequential+Convex+Programming&rft.au=Mahler%2C+Jeffrey&rft.au=Patil%2C+Sachin&rft.au=Kehoe%2C+Ben&rft.au=van+den+Berg%2C+Jur&rft.date=2015-05-01&rft.pub=IEEE&rft.issn=1050-4729&rft.spage=4919&rft.epage=4926&rft_id=info:doi/10.1109%2FICRA.2015.7139882&rft.externalDocID=7139882 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-4729&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-4729&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-4729&client=summon |