Image-to-Image Translation with Conditional Adversarial Networks

We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) S. 5967 - 5976
Hauptverfasser: Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, Efros, Alexei A.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2017
Schlagworte:
ISSN:1063-6919, 1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Moreover, since the release of the pi×2pi× software associated with this paper, hundreds of twitter users have posted their own artistic experiments using our system. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without handengineering our loss functions either.
AbstractList We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Moreover, since the release of the pi×2pi× software associated with this paper, hundreds of twitter users have posted their own artistic experiments using our system. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without handengineering our loss functions either.
Author Tinghui Zhou
Jun-Yan Zhu
Efros, Alexei A.
Isola, Phillip
Author_xml – sequence: 1
  givenname: Phillip
  surname: Isola
  fullname: Isola, Phillip
  organization: Berkeley AI Res. (BAIR) Lab., UC Berkeley, Berkeley, CA, USA
– sequence: 2
  surname: Jun-Yan Zhu
  fullname: Jun-Yan Zhu
  organization: Berkeley AI Res. (BAIR) Lab., UC Berkeley, Berkeley, CA, USA
– sequence: 3
  surname: Tinghui Zhou
  fullname: Tinghui Zhou
  organization: Berkeley AI Res. (BAIR) Lab., UC Berkeley, Berkeley, CA, USA
– sequence: 4
  givenname: Alexei A.
  surname: Efros
  fullname: Efros, Alexei A.
  organization: Berkeley AI Res. (BAIR) Lab., UC Berkeley, Berkeley, CA, USA
BookMark eNpNz0tPwzAQBGCDikRTOHLikj_gsptN7PhGFfGoVAFCEdfKbjZgSBNkR1T8e8rjwGm-uYw0iZj0Q89CnCHMEcFcVE8Pj_MMUM8VZQciwYJKBXmh80MxRVAklUEz-edjkcT4CpCRzmAqLpdb-8xyHOQP0jrYPnZ29EOf7vz4klZD3_jvart00XxwiDb4ve943A3hLZ6Io9Z2kU__cibq66u6upWr-5tltVhJj7oYZVlg45TWrJ3LSZcaTL4hQwzM1IJT1maM5Bw11midoaMSqbBIm7JtmWbi_HfWM_P6PfitDZ_rEgFw__kL_u1Lhg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2017.632
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1538604574
9781538604571
EISSN 1063-6919
EndPage 5976
ExternalDocumentID 8100115
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-851db677e7bb43787094c393e0ee3f0b6aa2e13bb3da97721b38135a13c8ffe3
IEDL.DBID RIE
ISICitedReferencesCount 13121
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418371406007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Wed Aug 27 02:33:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-851db677e7bb43787094c393e0ee3f0b6aa2e13bb3da97721b38135a13c8ffe3
PageCount 10
ParticipantIDs ieee_primary_8100115
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0003211698
Score 2.6290998
Snippet We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping...
SourceID ieee
SourceType Publisher
StartPage 5967
SubjectTerms Force
Gallium nitride
Generators
Image edge detection
Image resolution
Training
Title Image-to-Image Translation with Conditional Adversarial Networks
URI https://ieeexplore.ieee.org/document/8100115
WOSCitedRecordID wos000418371406007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQNTgRbxLQ-MuI3jxI43pIoKlqpCFepW-VPqQIualN-P7aQpAwubdYujs517vnvnB_AonNBJanKcE8VxpjjBSkqOHU8TI_19jDsVxSb4bFYsl2Legae2F8ZaG8lndhSGsZZvtnofUmXjgkQE04Uu57zu1WrzKdTfZJhoKwhpUF-JlU5GMRNEHN_XHE8-5u-B1MVHLKiO_FJViUFl2v_f55zB8Nidh-Zt3DmHjt1cQL-Bk6g5rKU3HRQbDrYBPL99-v8HrrY4DlCMVDUbDoWMLPJTmHWdHkRRq7mUYYeiWc0WL4ewmL4sJq-40VDAaw8MKuwBlVGMc8uVymg4nSLTVFCbWEtdopiUqSVUKWqkh4IpUT6E01wSqgvnLL2E3ma7sVeAlCs8tpW80EJllgmREc2SQhvhMu9McQ2D4KLVV_1Kxqrxzs3f5ls4DStQE1_voFft9vYeTvR3tS53D3FpfwBJvaIY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSECsbf9uDRwrqWdr2ZEAlEXIghhhtpuzbhIBg2_PttuzE8ePHWvEuX13bv63vf6wfAo7BCR3HWR32sOKKKY6Sk5MjyOMqku49xq4LYBE_TZD4X0wZ4qnthjDGBfGa6fhhq-dlab32qrJfggGAOwGGf0hiX3Vp1RoW4uwwTdQ0h9vorodbJCGICi_0Lm73Bx_Td07p4l3ndkV-6KiGsDFv_-6BT0Nn358FpHXnOQMOszkGrApSwOq65M-00G3a2Nngef7o_CCrWKAxgiFUlHw76nCx0U2TLMkEIg1pzLv0ehWnJF887YDZ8mQ1GqFJRQEsHDQrkIFWmGOeGK0WJP5-CaiKIiYwhNlJMythgohTJpAODMVYuiJO-xEQn1hpyAZqr9cpcAqhs4tCt5IkWihomBMWaRYnOhKXOmeIKtL2LFl_lOxmLyjvXf5sfwPFo9jZZTMbp6w048atR0mBvQbPYbM0dONLfxTLf3Idl_gHqLqVf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Image-to-Image+Translation+with+Conditional+Adversarial+Networks&rft.au=Isola%2C+Phillip&rft.au=Jun-Yan+Zhu&rft.au=Tinghui+Zhou&rft.au=Efros%2C+Alexei+A.&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=5967&rft.epage=5976&rft_id=info:doi/10.1109%2FCVPR.2017.632&rft.externalDocID=8100115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon