Iterative fault tolerant control based on Stochastic Distribution

A new design of a fault tolerant control (FTC)-based an adaptive, fixed-structure PI controller, with constraints on the state vector for nonlinear discrete-time system subject to stochastic non-Gaussian disturbance is studied. The objective of the reliable control algorithm scheme is to design a co...

Full description

Saved in:
Bibliographic Details
Published in:2011 50th IEEE Conference on Decision and Control and European Control Conference pp. 2100 - 2105
Main Authors: Skaf, Z., AI-Bayati, Ahmad, Hong Wang, Aiping Wang
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2011
Subjects:
ISBN:9781612848006, 1612848001
ISSN:0191-2216
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A new design of a fault tolerant control (FTC)-based an adaptive, fixed-structure PI controller, with constraints on the state vector for nonlinear discrete-time system subject to stochastic non-Gaussian disturbance is studied. The objective of the reliable control algorithm scheme is to design a control signal such that the actual probability density function (PDF) of the system is made as close as possible to a desired PDF, and make the tracking performance converge to zero, not only when all components are functional but also in case of admissible faults. A Linear Matrix Inequality (LMI)-based FTC method is presented to ensure that the fault can be estimated and compensated for. A radial basis function (RBF) neural network is used to approximate the output PDF of the system. Thus, the aim of the output PDF control will be a RBF weight control with an adaptive tuning of the basis function parameters. The key issue here is to divide the control horizon into a number of equal time intervals called batches. Within each interval, there are a fixed number of sample points. The design procedure is divided into two main algorithms, within each batch, and between any two adjacent batches. A P-type ILC law is employed to tune the parameters of the RBF neural network so that the PDF tracking error decreases along with the batches. Sufficient conditions for the proposed fault tolerance are expressed as LMIs. An analysis of the ILC convergence is carried out. Finally, the effectiveness of the proposed method is demonstrated with an illustrated example.
AbstractList A new design of a fault tolerant control (FTC)-based an adaptive, fixed-structure PI controller, with constraints on the state vector for nonlinear discrete-time system subject to stochastic non-Gaussian disturbance is studied. The objective of the reliable control algorithm scheme is to design a control signal such that the actual probability density function (PDF) of the system is made as close as possible to a desired PDF, and make the tracking performance converge to zero, not only when all components are functional but also in case of admissible faults. A Linear Matrix Inequality (LMI)-based FTC method is presented to ensure that the fault can be estimated and compensated for. A radial basis function (RBF) neural network is used to approximate the output PDF of the system. Thus, the aim of the output PDF control will be a RBF weight control with an adaptive tuning of the basis function parameters. The key issue here is to divide the control horizon into a number of equal time intervals called batches. Within each interval, there are a fixed number of sample points. The design procedure is divided into two main algorithms, within each batch, and between any two adjacent batches. A P-type ILC law is employed to tune the parameters of the RBF neural network so that the PDF tracking error decreases along with the batches. Sufficient conditions for the proposed fault tolerance are expressed as LMIs. An analysis of the ILC convergence is carried out. Finally, the effectiveness of the proposed method is demonstrated with an illustrated example.
Author Aiping Wang
Skaf, Z.
Hong Wang
AI-Bayati, Ahmad
Author_xml – sequence: 1
  givenname: Z.
  surname: Skaf
  fullname: Skaf, Z.
  email: Zakwan.Skaf@manchester.ac.uk
  organization: Control Syst. Center, Univ. of Manchester, Manchester, UK
– sequence: 2
  givenname: Ahmad
  surname: AI-Bayati
  fullname: AI-Bayati, Ahmad
  email: Ahmad.Al-Bayati@postgrad.manchester.ac.uk
  organization: Control Syst. Center, Univ. of Manchester, Manchester, UK
– sequence: 3
  surname: Hong Wang
  fullname: Hong Wang
  email: HongWang@manchester.ac.uk
  organization: Control Syst. Center, Univ. of Manchester, Manchester, UK
– sequence: 4
  surname: Aiping Wang
  fullname: Aiping Wang
  email: apwang401@126.com
  organization: Inst. of Comput. Sci., Anhui Univ., Hefei, China
BookMark eNotj81KAzEYRSNWsFO7F9zkBWb8vvzPskz9KRRcqOuSmSQYGROZSQXf3oJdXTgHDtyKLFJOnpBbhAYR2vtu2zUMEBuFChjwC1KhUJqDkJpfknWrDSpkRhgAtSBLwBZrxlBdk2qePwHAgFJLstkVP9kSfzwN9jgWWvJ4AqnQIacy5ZH2dvaO5kRfSx4-7FziQLdxLlPsjyXmdEOugh1nvz7virw_Prx1z_X-5WnXbfZ1RC1LbTgTzPVeyRCshWBNcP0gXXAeDZcwGAGc8Ra5BRycdlqdvHVGeBGk4HxF7v670Xt_-J7il51-D-f7_A-ViU6l
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC.2011.6160203
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1467304573
1612847994
9781612847993
161284801X
9781612848013
9781467304573
EndPage 2105
ExternalDocumentID 6160203
Genre orig-research
GroupedDBID 29P
6IE
6IF
6IH
6IK
6IM
AAJGR
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-83242dbe65ffaa0fa8fdbc5dfde18350c840323913a01cd7d76dbcad84e4f5433
IEDL.DBID RIE
ISBN 9781612848006
1612848001
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303506202115&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0191-2216
IngestDate Wed Aug 27 04:11:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-83242dbe65ffaa0fa8fdbc5dfde18350c840323913a01cd7d76dbcad84e4f5433
PageCount 6
ParticipantIDs ieee_primary_6160203
PublicationCentury 2000
PublicationDate 2011-Dec.
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-Dec.
PublicationDecade 2010
PublicationTitle 2011 50th IEEE Conference on Decision and Control and European Control Conference
PublicationTitleAbbrev CDC
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008066
ssj0000669063
Score 1.4779243
Snippet A new design of a fault tolerant control (FTC)-based an adaptive, fixed-structure PI controller, with constraints on the state vector for nonlinear...
SourceID ieee
SourceType Publisher
StartPage 2100
SubjectTerms Closed loop systems
Fault tolerance
Fault tolerant systems
Probability density function
Stochastic systems
Vectors
Title Iterative fault tolerant control based on Stochastic Distribution
URI https://ieeexplore.ieee.org/document/6160203
WOSCitedRecordID wos000303506202115&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMAf2_CgFz828ZscPFqXNk2aHGVzKMgYqLDbyCcORiuz8-83aWun4MVbmx5akua9l_fxewDXlHGNqfU_LwlQbSNYxJlSfuMlllnCM13T9Z-y6ZTP52LWgZu2FsZaWyWf2dtwWcXyTaE3wVU2ZDELgbMudLOM1bVarT_Fq06B2VYKc1zHKf15JEqSmIWiLhaEsbeQ4ob19H3fxi-xGI7Goxrs2bzsV9eVSulM9v_3uQcw2FbvoVmrlw6hY_Mj2PsBHuzD3WMFU_aSDjm5WZWoLFZ-IC9Rk7qOgnYzqMjRc1noNxlozmgcILtNf6wBvE7uX0YPUdNMIVp6C6GMeLCcjLKMOicldpI7ozQ1zli_qynW_qRHEiJiInGsTWYy5p9Lw1ObOpoScgy9vMjtCSCjVEpSSbGxPBVKcIWtTgmnAhPtpesp9MNkLN5rXsaimYezv4fPYbfy01YpIhfQK9cbewk7-rNcfqyvqkX-Aj87oFk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LT8IwGMAbRBP14gOMb3vw6KRbH2uPBiQQkZCICTfS1yIJ2QwO_37bbQ5NvHjbusOWdv2-r9_j9wFwSxnXiFr382IP1TaCBZwp5TZeZJnFPNYlXX8Uj8d8NhOTBrira2GstUXymb33l0Us32R67V1lHRYyHzjbAtuUkAiV1Vq1R8UpT4HYRg5zVEYq3YkkiKKQ-bIu5sWxs5HCivb0fV9HMJHodHvdEu1Zve5X35VC7fQP_vfBh6C9qd-Dk1ozHYGGTY_B_g_0YAs8DAucspN1MJHrZQ7zbOkG0hxWyevQ6zcDsxS-5Jl-k57nDHses1t1yGqD1_7jtDsIqnYKwcLZCHnAve1klGU0SaREieSJUZqaxFi3rynS7qyHIyxCLFGoTWxi5p5Lw4klCSUYn4BmmqX2FECjFMFEUmQsJ0IJrpDVBHMqENZOvp6Blp-M-XtJzJhX83D-9_AN2B1Mn0fz0XD8dAH2Cq9tkTByCZr5am2vwI7-zBcfq-tiwb8AzTyjoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+50th+IEEE+Conference+on+Decision+and+Control+and+European+Control+Conference&rft.atitle=Iterative+fault+tolerant+control+based+on+Stochastic+Distribution&rft.au=Skaf%2C+Z.&rft.au=AI-Bayati%2C+Ahmad&rft.au=Hong+Wang&rft.au=Aiping+Wang&rft.date=2011-12-01&rft.pub=IEEE&rft.isbn=9781612848006&rft.issn=0191-2216&rft.spage=2100&rft.epage=2105&rft_id=info:doi/10.1109%2FCDC.2011.6160203&rft.externalDocID=6160203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon