Subspace Clustering with Priors via Sparse Quadratically Constrained Quadratic Programming

This paper considers the problem of recovering a subspace arrangement from noisy samples, potentially corrupted with outliers. Our main result shows that this problem can be formulated as a convex semi-definite optimization problem subject to an additional rank constrain that involves only a very sm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) S. 5204 - 5212
Hauptverfasser: Yongfang Cheng, Yin Wang, Sznaier, Mario, Camps, Octavia
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2016
Schlagworte:
ISSN:1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!