Subspace Clustering with Priors via Sparse Quadratically Constrained Quadratic Programming
This paper considers the problem of recovering a subspace arrangement from noisy samples, potentially corrupted with outliers. Our main result shows that this problem can be formulated as a convex semi-definite optimization problem subject to an additional rank constrain that involves only a very sm...
Saved in:
| Published in: | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 5204 - 5212 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2016
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper considers the problem of recovering a subspace arrangement from noisy samples, potentially corrupted with outliers. Our main result shows that this problem can be formulated as a convex semi-definite optimization problem subject to an additional rank constrain that involves only a very small number of variables. This is established by first reducing the problem to a quadratically constrained quadratic problem and then using its special structure to find conditions guaranteeing that a suitably built convex relaxation is indeed exact. When combined with the standard nuclear norm relaxation for rank, the results above lead to computationally efficient algorithms with optimality guarantees. A salient feature of the proposed approach is its ability to incorporate existing a-priori information about the noise, co-ocurrences, and percentage of outliers. These results are illustrated with several examples. |
|---|---|
| AbstractList | This paper considers the problem of recovering a subspace arrangement from noisy samples, potentially corrupted with outliers. Our main result shows that this problem can be formulated as a convex semi-definite optimization problem subject to an additional rank constrain that involves only a very small number of variables. This is established by first reducing the problem to a quadratically constrained quadratic problem and then using its special structure to find conditions guaranteeing that a suitably built convex relaxation is indeed exact. When combined with the standard nuclear norm relaxation for rank, the results above lead to computationally efficient algorithms with optimality guarantees. A salient feature of the proposed approach is its ability to incorporate existing a-priori information about the noise, co-ocurrences, and percentage of outliers. These results are illustrated with several examples. |
| Author | Yongfang Cheng Yin Wang Camps, Octavia Sznaier, Mario |
| Author_xml | – sequence: 1 surname: Yongfang Cheng fullname: Yongfang Cheng email: cheng.yong@husky.neu.edu organization: Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA – sequence: 2 surname: Yin Wang fullname: Yin Wang email: wang.yin@husky.neu.edu organization: Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA – sequence: 3 givenname: Mario surname: Sznaier fullname: Sznaier, Mario email: msznaier@coe.neu.edu organization: Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA – sequence: 4 givenname: Octavia surname: Camps fullname: Camps, Octavia email: camps@coe.neu.edu organization: Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA |
| BookMark | eNpFjD1PwzAUAA0CiVI6MrH4D6T42Yk_RhRBQapEocDAUr3EL8UoTSo7BfXfUwkkphtOd-fspOs7YuwSxBRAuOvybfE8lQL0tNDyiE2csZBro6wtAI7ZCIRWmXbgztgkpU8hBDhtwboRe1_uqrTFmnjZ7tJAMXRr_h2GD76IoY-JfwXkyy3GRPxphz7iEGps2z0v-y4NEUNH_t8cqn4dcbM5bC7YaYNtoskfx-z17valvM_mj7OH8maeBTDFkJlaSg85SGdya6gAUtAUPhc6b2zjqVFWgq-cyLGuyEPtEatKCF9JrBWRGrOr328gotU2hg3G_coYK5wC9QOqVFaK |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2016.562 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 9781467388511 1467388513 |
| EISSN | 1063-6919 |
| EndPage | 5212 |
| ExternalDocumentID | 7780931 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-i175t-7c22d141297487e51e31f5d4064f8fdef3821db904acbed1cdaabb00db2ac3ee3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400012305030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:54:53 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-7c22d141297487e51e31f5d4064f8fdef3821db904acbed1cdaabb00db2ac3ee3 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_7780931 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-June |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001968189 ssj0023720 ssj0003211698 |
| Score | 2.0490623 |
| Snippet | This paper considers the problem of recovering a subspace arrangement from noisy samples, potentially corrupted with outliers. Our main result shows that this... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 5204 |
| SubjectTerms | Clustering algorithms Computational complexity Image segmentation Noise measurement Robustness Symmetric matrices |
| Title | Subspace Clustering with Priors via Sparse Quadratically Constrained Quadratic Programming |
| URI | https://ieeexplore.ieee.org/document/7780931 |
| WOSCitedRecordID | wos000400012305030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb8IwDI4Y2mEntsG0t3LYcQXStE1zRkM7TIg9hXZBaexISAwQUKT9-zmllB122a11JTeKmzqfY_tj7A5smuhMYSAyJYModnFgnKGNnHahVeC06RaFwk9qMEhHIz2ssfuqFgYRi-QzbPvL4iwf5jb3obKOUikBcMI6B0ol21qtfTxFJ-R7dHUvCdkkujpRCD0by77HZqf3MXzxiV1JO_ZEOb-YVQrH0m_8b0jHrLWv0OPDyvecsBrOTlmj3FLycsGuSLRjbdjJmuzT_ysIKSPvTXPfJoEUcB-OJYWT-XLFNxPDXxcEeJE_5wb8J0KGnH5zT-5ZUErQK6onfhg-w-uL1LTYe__hrfcYlAwLwYS2DetA2TAEEZHPVwRcMBYohYuBnHzkUgfoZBoKyHQ3MjZDEBaMyWihQhYaKxHlGavP5jM8Z9yYCCQ4kUmCaGTuVDshAeI0tL7lmrtgTT9748W2ica4nLjLv8VX7MgbZ5uTdc3q62WON-zQbtaT1fK2sPwPKGqwPQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8ImugTKhi_7YOPDui6reszkWBEgoqG-EK69posQSDASPzvvQ4YPvji23ZNuqYfu_td7-5HyJ3RcSQTAR5LBPeC0IaesgoNOWl9LYyVqpknCndFrxcPh7JfIvdFLgwA5MFnUHeP-V2-merMucoaQsQIwBHr7IVB4DfX2Vo7j4qMUPvI4p0jtolkcafgOz6WXZXNRuuj_-pCu6J66KhyfnGr5KqlXfnfoI5IbZejR_uF9jkmJZickMrGqKSbI7tA0Za3YSurkk_3t0CsDLQ1zlyhBOyAOocsdphO5wu6ShV9myHkBfqSKeM2CS7l-Js6es-cVAI_UbS4YbgYry_spkbe2w-DVsfbcCx4KRoOS09o3zcsQK0vELpAyIAzGxpU84GNrQHLY5-ZRDYDpRMwTBulEjyqJvGV5gD8lJQn0wmcEapUYLixLOEI0nDBY2kZNyaMfe2KrtlzUnWzN5qty2iMNhN38bf4lhx0Bs_dUfex93RJDt1CrSO0rkh5Oc_gmuzr1TJdzG_yXfADfwOzhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Subspace+Clustering+with+Priors+via+Sparse+Quadratically+Constrained+Quadratic+Programming&rft.au=Yongfang+Cheng&rft.au=Yin+Wang&rft.au=Sznaier%2C+Mario&rft.au=Camps%2C+Octavia&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=5204&rft.epage=5212&rft_id=info:doi/10.1109%2FCVPR.2016.562&rft.externalDocID=7780931 |