Subspace Clustering with Priors via Sparse Quadratically Constrained Quadratic Programming

This paper considers the problem of recovering a subspace arrangement from noisy samples, potentially corrupted with outliers. Our main result shows that this problem can be formulated as a convex semi-definite optimization problem subject to an additional rank constrain that involves only a very sm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) S. 5204 - 5212
Hauptverfasser: Yongfang Cheng, Yin Wang, Sznaier, Mario, Camps, Octavia
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2016
Schlagworte:
ISSN:1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper considers the problem of recovering a subspace arrangement from noisy samples, potentially corrupted with outliers. Our main result shows that this problem can be formulated as a convex semi-definite optimization problem subject to an additional rank constrain that involves only a very small number of variables. This is established by first reducing the problem to a quadratically constrained quadratic problem and then using its special structure to find conditions guaranteeing that a suitably built convex relaxation is indeed exact. When combined with the standard nuclear norm relaxation for rank, the results above lead to computationally efficient algorithms with optimality guarantees. A salient feature of the proposed approach is its ability to incorporate existing a-priori information about the noise, co-ocurrences, and percentage of outliers. These results are illustrated with several examples.
AbstractList This paper considers the problem of recovering a subspace arrangement from noisy samples, potentially corrupted with outliers. Our main result shows that this problem can be formulated as a convex semi-definite optimization problem subject to an additional rank constrain that involves only a very small number of variables. This is established by first reducing the problem to a quadratically constrained quadratic problem and then using its special structure to find conditions guaranteeing that a suitably built convex relaxation is indeed exact. When combined with the standard nuclear norm relaxation for rank, the results above lead to computationally efficient algorithms with optimality guarantees. A salient feature of the proposed approach is its ability to incorporate existing a-priori information about the noise, co-ocurrences, and percentage of outliers. These results are illustrated with several examples.
Author Yongfang Cheng
Yin Wang
Camps, Octavia
Sznaier, Mario
Author_xml – sequence: 1
  surname: Yongfang Cheng
  fullname: Yongfang Cheng
  email: cheng.yong@husky.neu.edu
  organization: Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA
– sequence: 2
  surname: Yin Wang
  fullname: Yin Wang
  email: wang.yin@husky.neu.edu
  organization: Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA
– sequence: 3
  givenname: Mario
  surname: Sznaier
  fullname: Sznaier, Mario
  email: msznaier@coe.neu.edu
  organization: Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA
– sequence: 4
  givenname: Octavia
  surname: Camps
  fullname: Camps, Octavia
  email: camps@coe.neu.edu
  organization: Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA
BookMark eNpFjD1PwzAUAA0CiVI6MrH4D6T42Yk_RhRBQapEocDAUr3EL8UoTSo7BfXfUwkkphtOd-fspOs7YuwSxBRAuOvybfE8lQL0tNDyiE2csZBro6wtAI7ZCIRWmXbgztgkpU8hBDhtwboRe1_uqrTFmnjZ7tJAMXRr_h2GD76IoY-JfwXkyy3GRPxphz7iEGps2z0v-y4NEUNH_t8cqn4dcbM5bC7YaYNtoskfx-z17valvM_mj7OH8maeBTDFkJlaSg85SGdya6gAUtAUPhc6b2zjqVFWgq-cyLGuyEPtEatKCF9JrBWRGrOr328gotU2hg3G_coYK5wC9QOqVFaK
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.562
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 5212
ExternalDocumentID 7780931
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-7c22d141297487e51e31f5d4064f8fdef3821db904acbed1cdaabb00db2ac3ee3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400012305030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 01:54:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-7c22d141297487e51e31f5d4064f8fdef3821db904acbed1cdaabb00db2ac3ee3
PageCount 9
ParticipantIDs ieee_primary_7780931
PublicationCentury 2000
PublicationDate 2016-June
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.0490623
Snippet This paper considers the problem of recovering a subspace arrangement from noisy samples, potentially corrupted with outliers. Our main result shows that this...
SourceID ieee
SourceType Publisher
StartPage 5204
SubjectTerms Clustering algorithms
Computational complexity
Image segmentation
Noise measurement
Robustness
Symmetric matrices
Title Subspace Clustering with Priors via Sparse Quadratically Constrained Quadratic Programming
URI https://ieeexplore.ieee.org/document/7780931
WOSCitedRecordID wos000400012305030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELYo6tCJtlD1LQ8dG8B24jgzKupQIfoU6oIc-yIhUUBAkPrvexdC6NClW3KWLpYfufvsu_sYu0t9N8q0UoHQuILDVOrAWGJN1WhbhEePRBWJwk_xYGBGo2RYY_dVLgwAFMFn0KbH4i7fz11OR2WdODYIwBHrHMSx3uZq7c9TEo22J6neFSIbnVQ3CpLYWPY1Nju9j-ELBXbpdkREOb-YVQrD0m_8r0vHrLXP0OPDyvacsBrMTlmjdCl5uWFXKNqxNuxkTfZJ_wpEysB705zKJKACTsexqHAyX674ZmL56wIBL_Dn3HpaIjiR029O5J4FpQR-omqhblCE1xeqabH3_sNb7zEoGRaCCboN6yB2UnoRos2PEbhAJECJLPJo5MPMZB4yZaTwadINrUvBC-etTXGj-lRapwDUGavP5jM4Zzz0CLK7zqQCfBiBRbdTGuMSa6WjImAXrEmjN15si2iMy4G7_Ft8xY5ocrYxWdesvl7mcMMO3WY9WS1vi5n_AWvFrjY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4QNNETKhjf7sGjhe6jrzORYESCioZ4IdvdadIEgQAl8d87W0rx4MVbO5tMN_vozLc7Mx8hd7FxvcQXwmE-rmAZc98JlWVN9dG2MIMeicgThXtBvx-ORtGgQu7LXBgAyIPPoGkf87t8M9OZPSprBUGIAByxzp4nJXc32Vq7E5XIR-sTle8CsY0flXcK3PKx7Kpsttofg1cb2uU3PUuV84tbJTctndr_OnVEGrscPToorc8xqcD0hNQKp5IWW3aJoi1vw1ZWJ5_2b4FYGWh7ktlCCaiA2gNZVJjOFku6ThV9myPkBfqSKWMXCU7l5Jtaes-cVAI_UbbYbtgYry9U0yDvnYdhu-sUHAtOio7Dygk054ZJtPoBQhfwGAiWeAbNvEzCxEAiQs5MHLlS6RgM00apGLeqibnSAkCckup0NoUzQqVBmO3qMGZgpAcKHU8ehjpSimtbBuyc1O3ojeebMhrjYuAu_hbfkoPu8Lk37j32ny7JoZ2oTYTWFamuFhlck329XqXLxU2-Cn4Apv6xfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Subspace+Clustering+with+Priors+via+Sparse+Quadratically+Constrained+Quadratic+Programming&rft.au=Yongfang+Cheng&rft.au=Yin+Wang&rft.au=Sznaier%2C+Mario&rft.au=Camps%2C+Octavia&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=5204&rft.epage=5212&rft_id=info:doi/10.1109%2FCVPR.2016.562&rft.externalDocID=7780931