Improvement of Prediction Accuracy Using Discretization and Voting Classifier

There are many examples of classification algorithms developed so far for data analysis, pattern recognition, scene analysis and learning from graphical models. Being motivated by the works of a number of researchers, here the author have tried to improve the prediction accuracy by first discretizin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:18th International Conference on Pattern Recognition (ICPR'06) Ročník 2; s. 695 - 698
Hlavní autor: Ekbal, A.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2006
Témata:
ISBN:0769525210, 9780769525211
ISSN:1051-4651
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract There are many examples of classification algorithms developed so far for data analysis, pattern recognition, scene analysis and learning from graphical models. Being motivated by the works of a number of researchers, here the author have tried to improve the prediction accuracy by first discretizing the real world dataset and then applying a voting classifier on the discretized dataset. In this work, continuous dataset from the raw real world dataset having missing attribute values have been generated and discretized the dataset using SPID 3 algorithm. Then naive-Bayesian classifier has been implemented to apply it on the continuous and discretized dataset. Finally, an ensemble learner (Ada-boost algorithm) has been developed where the naive Bayesian classifier has been used as the base learner of the ensemble. The extensive empirical results over the twenty real world datasets show that the prediction accuracy can be increased by the joint performance of discretization and voting classifier
AbstractList There are many examples of classification algorithms developed so far for data analysis, pattern recognition, scene analysis and learning from graphical models. Being motivated by the works of a number of researchers, here the author have tried to improve the prediction accuracy by first discretizing the real world dataset and then applying a voting classifier on the discretized dataset. In this work, continuous dataset from the raw real world dataset having missing attribute values have been generated and discretized the dataset using SPID 3 algorithm. Then naive-Bayesian classifier has been implemented to apply it on the continuous and discretized dataset. Finally, an ensemble learner (Ada-boost algorithm) has been developed where the naive Bayesian classifier has been used as the base learner of the ensemble. The extensive empirical results over the twenty real world datasets show that the prediction accuracy can be increased by the joint performance of discretization and voting classifier
Author Ekbal, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Ekbal
  fullname: Ekbal, A.
  organization: Murshidabad Coll. of Eng. & Technol., West Bengal
BookMark eNotjEtLAzEYAANWsK09evKSP7Drl7c5llXrQsUi1mvJUyLd3ZKsQv31Pucyh4GZoUk_9AGhCwI1IaCv2mbzVFMAWUt9fYJmoKQWVFACEzQlIEjFpSBnaFHKG3zDheBUT9FD2x3y8BG60I94iHiTg09uTEOPl869Z-OOeFtS_4pvUnE5jOnT_FbTe_wyjD-l2ZtSUkwhn6PTaPYlLP49R9u72-fmvlo_rtpmua4SUWKslAXChROK-uh9ZOAEtcwxiCpyY8AKZb1VkmoVNGVOSmqdA86s505Iy-bo8u-bQgi7Q06dyccdkVozAPYFvTtQAA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR.2006.698
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 698
ExternalDocumentID 1699300
Genre orig-research
GroupedDBID 29J
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-7b0145c572dfddf30c52b3c30f7f4aa0b57bdb76297e923c662bcc043bd4c56b3
IEDL.DBID RIE
ISBN 0769525210
9780769525211
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000240678300167&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-4651
IngestDate Wed Aug 27 01:40:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-7b0145c572dfddf30c52b3c30f7f4aa0b57bdb76297e923c662bcc043bd4c56b3
PageCount 4
ParticipantIDs ieee_primary_1699300
PublicationCentury 2000
PublicationDate 20060000
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – year: 2006
  text: 20060000
PublicationDecade 2000
PublicationTitle 18th International Conference on Pattern Recognition (ICPR'06)
PublicationTitleAbbrev ICPR
PublicationYear 2006
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000455429
ssj0020358
Score 1.6172794
Snippet There are many examples of classification algorithms developed so far for data analysis, pattern recognition, scene analysis and learning from graphical...
SourceID ieee
SourceType Publisher
StartPage 695
SubjectTerms Accuracy
Ada-Boost Algorithm
Bagging
Bayesian classifier
Bayesian methods
Boosting
Classification
Classification algorithms
Data analysis
Decision trees
Naïve
Neural networks
Pattern recognition
SPID3 Algorithm
Voting
Voting classifier
Title Improvement of Prediction Accuracy Using Discretization and Voting Classifier
URI https://ieeexplore.ieee.org/document/1699300
Volume 2
WOSCitedRecordID wos000240678300167&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VigGWQlvEWx4YCXUetpMRFSqQoKoQoG6Vn1KWBIUUiX-P7YQUJBa2JEMU-Rx_d989PoCLMFMs1cIEqRIiSFLBg9RgEjBOSKQtxKfKW_qBzefpcpktenDZ9cJorX3xmb5ylz6Xr0q5dlTZJKQWTbEN0LcYo02vVsenWNfESS91wRaOSdMGR2yMREnYhOwZiSxetbOeuvtwM3xzcj9dPDU5CpqlvyRXPOLMBv_71j0Yb1r30KIDpX3o6WIIg2_tBtT-ykPY_TGIcASPDbfgqUJUGvsGl79xNkPXUq4rLj-RLy5AN7k9Z3Tddm8iXij0WrrSaeTlNXNjYXYML7Pb5-ld0AotBLn1HuqACZdclIRFyihlYixJJGIZY8NMwjkWhAkl7LGZMW0dQklpJKTESSxUIgkV8QH0i7LQh4BYxrOQs5hiZS0isLDuGeFuOzDMODZHMHJrtXprZmms2mU6_vvxCexsKI9T6NfVWp_Btvyo8_fq3G-AL5kOqt0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4QNFEvKGB8uwePVraP7bZHgxKIQIhBw43sM-HSGiwm_nt3t7Vo4sVb20PT7Gz3m_nm8QHc-KmkieLaSyTnXpRw5iUaE48yQgJlID6RztJjOp0mi0U6a8Bt3QujlHLFZ-rOXrpcvszFxlJlPT82aIpNgL5DoijAZbdWzagY58SKL9XhFg5J2QhHTJQUE78M2lMSGMSqpj3V9_52_GZv1J89l1mKOE1-ia44zBm0_ve1h9DdNu-hWQ1LR9BQWRta3-oNqPqZ23DwYxRhByYlu-DIQpRr8wabwbFWQ_dCbNZMfCJXXoAeVuakUUXVv4lYJtFrbounkRPYXGkDtF14GTzO-0OvklrwVsZ_KDzKbXpREBpILaUOsSABD0WINdURY5gTyiU3B2dKlXEJRRwHXAgchVxGgsQ8PIZmlmfqBBBNWeozGsZYGotwzI2DRpjdEBRThvUpdOxaLd_KaRrLapnO_n58DXvD-WS8HI-mT-ewvyVALqBZrDfqEnbFR7F6X1-5zfAFsTKuJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=18th+International+Conference+on+Pattern+Recognition+%28ICPR%2706%29&rft.atitle=Improvement+of+Prediction+Accuracy+Using+Discretization+and+Voting+Classifier&rft.au=Ekbal%2C+A.&rft.date=2006-01-01&rft.pub=IEEE&rft.isbn=9780769525211&rft.issn=1051-4651&rft.volume=2&rft.spage=695&rft.epage=698&rft_id=info:doi/10.1109%2FICPR.2006.698&rft.externalDocID=1699300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-4651&client=summon