Discrete-time LQR optimal tracking control problems using Approximate Dynamic Programming algorithm with disturbance
Inspired by Approximate Dynamic Programming (ADP) and the Algebraic Riccatic Equation (ARE), this paper investigate a new optimal tracking control strategy for a class of discrete-time linear quadratic regulation (LQR) problems with disturbance. First, the optimal tracking problem is converted into...
Uložené v:
| Vydané v: | 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP) s. 716 - 721 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2013
|
| Predmet: | |
| ISBN: | 9781467362481, 1467362484 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Inspired by Approximate Dynamic Programming (ADP) and the Algebraic Riccatic Equation (ARE), this paper investigate a new optimal tracking control strategy for a class of discrete-time linear quadratic regulation (LQR) problems with disturbance. First, the optimal tracking problem is converted into designing infinite-horizon optimal regulator for the tracking error dynamics via system transformation. Then we compute the optimal tracking control policy, which can be considered as a way to solve the ARE of the well-known discrete-time optimal control problem forward in time. The iterative ADP algorithm via Heuristic Dynamic Programming (HDP) technique is introduced to solve the value function of the controlled system. To verify its robustness, disturbance is added to the controlled system. The simulation results show the effectiveness and robustness of the proposed algorithm in this paper. |
|---|---|
| ISBN: | 9781467362481 1467362484 |
| DOI: | 10.1109/ICICIP.2013.6568166 |

