A Distribution Network Reconfiguration Algorithm Based on Hopfield Neural Network
On the base of Hopfield neural network, the minimum of feeder looses is treated as the target function. Because the distribution network is radical, we put forward a method for deciding each node's in-degree by using Hopfield neural network. According to each node's in-degree, it can be ea...
Uložené v:
| Vydané v: | 2008 Fourth International Conference on Natural Computation Ročník 3; s. 9 - 13 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2008
|
| Predmet: | |
| ISBN: | 9780769533049, 0769533043 |
| ISSN: | 2157-9555 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | On the base of Hopfield neural network, the minimum of feeder looses is treated as the target function. Because the distribution network is radical, we put forward a method for deciding each node's in-degree by using Hopfield neural network. According to each node's in-degree, it can be easily determined whether the line will be used or not. So the state of switch and the scheme of reconfiguration can be decided correspondingly. The energy function of Hopfield neural network is given in this paper. The problems of satisfying the restriction of radial supplying and minimizing the feeder power looses are considered in the energy function simultaneously. The energy function even takes the problem that some lines may have no switches into consideration. By calculating an IEEE distribution network with three power sources, it can be found that the calculated result of Hopfield neural network is somewhat similar to the result obtained by the more complex genetic algorithm. Since the former is to calculate a group of differential function, so the calculation time needed is comparatively less. |
|---|---|
| AbstractList | On the base of Hopfield neural network, the minimum of feeder looses is treated as the target function. Because the distribution network is radical, we put forward a method for deciding each node's in-degree by using Hopfield neural network. According to each node's in-degree, it can be easily determined whether the line will be used or not. So the state of switch and the scheme of reconfiguration can be decided correspondingly. The energy function of Hopfield neural network is given in this paper. The problems of satisfying the restriction of radial supplying and minimizing the feeder power looses are considered in the energy function simultaneously. The energy function even takes the problem that some lines may have no switches into consideration. By calculating an IEEE distribution network with three power sources, it can be found that the calculated result of Hopfield neural network is somewhat similar to the result obtained by the more complex genetic algorithm. Since the former is to calculate a group of differential function, so the calculation time needed is comparatively less. |
| Author | Weixin Gao Nan Tang Xiangyang Mu |
| Author_xml | – sequence: 1 surname: Weixin Gao fullname: Weixin Gao organization: Shaanxi Key Lab. of Oil-Drilling Rigs Controlling Tech., Xian Shiyou Univ., Xian – sequence: 2 surname: Nan Tang fullname: Nan Tang organization: Shaanxi Key Lab. of Oil-Drilling Rigs Controlling Tech., Xian Shiyou Univ., Xian – sequence: 3 surname: Xiangyang Mu fullname: Xiangyang Mu organization: Shaanxi Key Lab. of Oil-Drilling Rigs Controlling Tech., Xian Shiyou Univ., Xian |
| BookMark | eNo1j01Lw0AURQdswbZm6cpN_kDqvLxMJm9Zo7WFUlF0XWaSN3U0TUqSIv5749fqwuHcC3cqRnVTsxCXIOcAkq7X-Tafx1Jmc0j0mQhIZ1KnpBBlQiMxiUHpiJRSYzH91kgmkMXnIui6NyklgtZa0kQ8LsJb3_Wtt6feN3W45f6jad_DJy6a2vn9qTU_fFHtm9b3r4fwxnRchgNaNUfnuSqHzmBV_9ULMXam6jj4y5l4Wd4956to83C_zhebyINWfZQ6lI5USpJRpaiArAXMHJaQ2Ng4RrRFxlkBlkujnCFDhU2ACiwwHn7OxNXvrmfm3bH1B9N-7pI0HX4BfgEsv1Pc |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICNC.2008.147 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 13 |
| ExternalDocumentID | 4667091 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-6f30f95690e3563519bb138f3d14b2afe33bc8e8c1beda5fa9a9cb419c3c32533 |
| IEDL.DBID | RIE |
| ISBN | 9780769533049 0769533043 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000264527500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2157-9555 |
| IngestDate | Wed Aug 27 02:04:30 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2008904182 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-6f30f95690e3563519bb138f3d14b2afe33bc8e8c1beda5fa9a9cb419c3c32533 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_4667091 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-Oct. |
| PublicationDateYYYYMMDD | 2008-10-01 |
| PublicationDate_xml | – month: 10 year: 2008 text: 2008-Oct. |
| PublicationDecade | 2000 |
| PublicationTitle | 2008 Fourth International Conference on Natural Computation |
| PublicationTitleAbbrev | ICNC |
| PublicationYear | 2008 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003177709 ssj0000395663 |
| Score | 1.4285023 |
| Snippet | On the base of Hopfield neural network, the minimum of feeder looses is treated as the target function. Because the distribution network is radical, we put... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 9 |
| SubjectTerms | Artificial intelligence Computer networks Distributed computing Distribution Power Network Equations Hopfield Neural Network Hopfield neural networks Mathematical model Power supplies Power system reliability Reconfiguration Switches Voltage |
| Title | A Distribution Network Reconfiguration Algorithm Based on Hopfield Neural Network |
| URI | https://ieeexplore.ieee.org/document/4667091 |
| Volume | 3 |
| WOSCitedRecordID | wos000264527500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1zePA0dRN_k4NH69ombZLjnI55KRMUdhtJmszCbMfs_PvNj3YD8eItCRTKl5b3fcn73gPgDpHc5NGhDpDSJMDM1KxMJiQQDo_TOCbSm02QLKPzOZt1wP2uF0Yp5chn6sEO3V1-XsmtPSob4tSqjZla54AQ4nu1ducpITKZfiMlZecGFwlxDA8DavaWMkl81e74lBg14jvtnO31N4cv42zsWZbRL9cVBzqT3v9e9xgM9t17cLbDpRPQUeUp6LX2DbD5m_vgdQSfrGxu43gFM88Ih7YiLXWx3PqPA45Wy2pT1B-f8NFAXg7N0rRaO-obtNoefNU-OgDvk-e38TRoHBaCwqQNdZBqFGoTNxYqlKTWq0-ICFGN8giLmGuFkJBUURkJlfNEc8aZFDhiEkkUm8CdgW5ZleocQM2Y4AzLJJXYYJymhAstFaWY61jg_AL0bYQWay-isWiCc_n38hU4ilvh2egadOvNVt2AQ_ldF1-bW7fzP_DZqBc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1jCnqauom_zcGjdW2TNs1xTseGs0yYsNtI0mQWZjtm599vkrYbiBdvTaBQvia870ve9x4Ad4gkOo92lYOkIg6mumalIiAOt3gc-j4RpdkEieNoNqOTBrjf9sJIKS35TD6YR3uXn-RiY47Kujg0amO61tkLMPa9sltre6LiIp3rV2JSZqyRkRDL8dCwZu4pg6Cs2y2jEqNKfqce050CZ3fUj_slz9L75btiYWfQ-t8HH4HOrn8PTrbIdAwaMjsBrdrAAVb7uQ3eevDJCOdWnlcwLjnh0NSkmUoXm3J5wN5yka_T4uMTPmrQS6CeGuYrS36DRt2DLetXO-B98DztD53KY8FJdeJQOKFCrtJxo65EQWjc-jj3UKRQ4mHuMyUR4iKSkfC4TFigGGVUcOxRgQTydeBOQTPLM3kGoKKUM4pFEAr9d6iKCONKyCjCTPkcJ-egbSI0X5UyGvMqOBd_T9-Cg-H0dTwfj-KXS3Do1zK03hVoFuuNvAb74rtIv9Y3dhX8AOLQq14 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+Fourth+International+Conference+on+Natural+Computation&rft.atitle=A+Distribution+Network+Reconfiguration+Algorithm+Based+on+Hopfield+Neural+Network&rft.au=Weixin+Gao&rft.au=Nan+Tang&rft.au=Xiangyang+Mu&rft.date=2008-10-01&rft.pub=IEEE&rft.isbn=9780769533049&rft.issn=2157-9555&rft.volume=3&rft.spage=9&rft.epage=13&rft_id=info:doi/10.1109%2FICNC.2008.147&rft.externalDocID=4667091 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-9555&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-9555&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-9555&client=summon |

