A Distribution Network Reconfiguration Algorithm Based on Hopfield Neural Network

On the base of Hopfield neural network, the minimum of feeder looses is treated as the target function. Because the distribution network is radical, we put forward a method for deciding each node's in-degree by using Hopfield neural network. According to each node's in-degree, it can be ea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2008 Fourth International Conference on Natural Computation Ročník 3; s. 9 - 13
Hlavní autori: Weixin Gao, Nan Tang, Xiangyang Mu
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2008
Predmet:
ISBN:9780769533049, 0769533043
ISSN:2157-9555
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract On the base of Hopfield neural network, the minimum of feeder looses is treated as the target function. Because the distribution network is radical, we put forward a method for deciding each node's in-degree by using Hopfield neural network. According to each node's in-degree, it can be easily determined whether the line will be used or not. So the state of switch and the scheme of reconfiguration can be decided correspondingly. The energy function of Hopfield neural network is given in this paper. The problems of satisfying the restriction of radial supplying and minimizing the feeder power looses are considered in the energy function simultaneously. The energy function even takes the problem that some lines may have no switches into consideration. By calculating an IEEE distribution network with three power sources, it can be found that the calculated result of Hopfield neural network is somewhat similar to the result obtained by the more complex genetic algorithm. Since the former is to calculate a group of differential function, so the calculation time needed is comparatively less.
AbstractList On the base of Hopfield neural network, the minimum of feeder looses is treated as the target function. Because the distribution network is radical, we put forward a method for deciding each node's in-degree by using Hopfield neural network. According to each node's in-degree, it can be easily determined whether the line will be used or not. So the state of switch and the scheme of reconfiguration can be decided correspondingly. The energy function of Hopfield neural network is given in this paper. The problems of satisfying the restriction of radial supplying and minimizing the feeder power looses are considered in the energy function simultaneously. The energy function even takes the problem that some lines may have no switches into consideration. By calculating an IEEE distribution network with three power sources, it can be found that the calculated result of Hopfield neural network is somewhat similar to the result obtained by the more complex genetic algorithm. Since the former is to calculate a group of differential function, so the calculation time needed is comparatively less.
Author Weixin Gao
Nan Tang
Xiangyang Mu
Author_xml – sequence: 1
  surname: Weixin Gao
  fullname: Weixin Gao
  organization: Shaanxi Key Lab. of Oil-Drilling Rigs Controlling Tech., Xian Shiyou Univ., Xian
– sequence: 2
  surname: Nan Tang
  fullname: Nan Tang
  organization: Shaanxi Key Lab. of Oil-Drilling Rigs Controlling Tech., Xian Shiyou Univ., Xian
– sequence: 3
  surname: Xiangyang Mu
  fullname: Xiangyang Mu
  organization: Shaanxi Key Lab. of Oil-Drilling Rigs Controlling Tech., Xian Shiyou Univ., Xian
BookMark eNo1j01Lw0AURQdswbZm6cpN_kDqvLxMJm9Zo7WFUlF0XWaSN3U0TUqSIv5749fqwuHcC3cqRnVTsxCXIOcAkq7X-Tafx1Jmc0j0mQhIZ1KnpBBlQiMxiUHpiJRSYzH91kgmkMXnIui6NyklgtZa0kQ8LsJb3_Wtt6feN3W45f6jad_DJy6a2vn9qTU_fFHtm9b3r4fwxnRchgNaNUfnuSqHzmBV_9ULMXam6jj4y5l4Wd4956to83C_zhebyINWfZQ6lI5USpJRpaiArAXMHJaQ2Ng4RrRFxlkBlkujnCFDhU2ACiwwHn7OxNXvrmfm3bH1B9N-7pI0HX4BfgEsv1Pc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICNC.2008.147
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 13
ExternalDocumentID 4667091
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-6f30f95690e3563519bb138f3d14b2afe33bc8e8c1beda5fa9a9cb419c3c32533
IEDL.DBID RIE
ISBN 9780769533049
0769533043
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000264527500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2157-9555
IngestDate Wed Aug 27 02:04:30 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008904182
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-6f30f95690e3563519bb138f3d14b2afe33bc8e8c1beda5fa9a9cb419c3c32533
PageCount 5
ParticipantIDs ieee_primary_4667091
PublicationCentury 2000
PublicationDate 2008-Oct.
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-Oct.
PublicationDecade 2000
PublicationTitle 2008 Fourth International Conference on Natural Computation
PublicationTitleAbbrev ICNC
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177709
ssj0000395663
Score 1.4285023
Snippet On the base of Hopfield neural network, the minimum of feeder looses is treated as the target function. Because the distribution network is radical, we put...
SourceID ieee
SourceType Publisher
StartPage 9
SubjectTerms Artificial intelligence
Computer networks
Distributed computing
Distribution Power Network
Equations
Hopfield Neural Network
Hopfield neural networks
Mathematical model
Power supplies
Power system reliability
Reconfiguration
Switches
Voltage
Title A Distribution Network Reconfiguration Algorithm Based on Hopfield Neural Network
URI https://ieeexplore.ieee.org/document/4667091
Volume 3
WOSCitedRecordID wos000264527500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1zePA0dRN_k4NH69ombZLjnI55KRMUdhtJmszCbMfs_PvNj3YD8eItCRTKl5b3fcn73gPgDpHc5NGhDpDSJMDM1KxMJiQQDo_TOCbSm02QLKPzOZt1wP2uF0Yp5chn6sEO3V1-XsmtPSob4tSqjZla54AQ4nu1ducpITKZfiMlZecGFwlxDA8DavaWMkl81e74lBg14jvtnO31N4cv42zsWZbRL9cVBzqT3v9e9xgM9t17cLbDpRPQUeUp6LX2DbD5m_vgdQSfrGxu43gFM88Ih7YiLXWx3PqPA45Wy2pT1B-f8NFAXg7N0rRaO-obtNoefNU-OgDvk-e38TRoHBaCwqQNdZBqFGoTNxYqlKTWq0-ICFGN8giLmGuFkJBUURkJlfNEc8aZFDhiEkkUm8CdgW5ZleocQM2Y4AzLJJXYYJymhAstFaWY61jg_AL0bYQWay-isWiCc_n38hU4ilvh2egadOvNVt2AQ_ldF1-bW7fzP_DZqBc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1jCnqauom_zcGjdW2TNs1xTseGs0yYsNtI0mQWZjtm599vkrYbiBdvTaBQvia870ve9x4Ad4gkOo92lYOkIg6mumalIiAOt3gc-j4RpdkEieNoNqOTBrjf9sJIKS35TD6YR3uXn-RiY47Kujg0amO61tkLMPa9sltre6LiIp3rV2JSZqyRkRDL8dCwZu4pg6Cs2y2jEqNKfqce050CZ3fUj_slz9L75btiYWfQ-t8HH4HOrn8PTrbIdAwaMjsBrdrAAVb7uQ3eevDJCOdWnlcwLjnh0NSkmUoXm3J5wN5yka_T4uMTPmrQS6CeGuYrS36DRt2DLetXO-B98DztD53KY8FJdeJQOKFCrtJxo65EQWjc-jj3UKRQ4mHuMyUR4iKSkfC4TFigGGVUcOxRgQTydeBOQTPLM3kGoKKUM4pFEAr9d6iKCONKyCjCTPkcJ-egbSI0X5UyGvMqOBd_T9-Cg-H0dTwfj-KXS3Do1zK03hVoFuuNvAb74rtIv9Y3dhX8AOLQq14
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+Fourth+International+Conference+on+Natural+Computation&rft.atitle=A+Distribution+Network+Reconfiguration+Algorithm+Based+on+Hopfield+Neural+Network&rft.au=Weixin+Gao&rft.au=Nan+Tang&rft.au=Xiangyang+Mu&rft.date=2008-10-01&rft.pub=IEEE&rft.isbn=9780769533049&rft.issn=2157-9555&rft.volume=3&rft.spage=9&rft.epage=13&rft_id=info:doi/10.1109%2FICNC.2008.147&rft.externalDocID=4667091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-9555&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-9555&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-9555&client=summon