Fast Convolutional Sparse Coding

Sparse coding has become an increasingly popular method in learning and vision for a variety of classification, reconstruction and coding tasks. The canonical approach intrinsically assumes independence between observations during learning. For many natural signals however, sparse coding is applied...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2013 IEEE Conference on Computer Vision and Pattern Recognition s. 391 - 398
Hlavní autori: Bristow, Hilton, Eriksson, Anders, Lucey, Simon
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2013
Predmet:
ISSN:1063-6919, 1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sparse coding has become an increasingly popular method in learning and vision for a variety of classification, reconstruction and coding tasks. The canonical approach intrinsically assumes independence between observations during learning. For many natural signals however, sparse coding is applied to sub-elements ( i.e. patches) of the signal, where such an assumption is invalid. Convolutional sparse coding explicitly models local interactions through the convolution operator, however the resulting optimization problem is considerably more complex than traditional sparse coding. In this paper, we draw upon ideas from signal processing and Augmented Lagrange Methods (ALMs) to produce a fast algorithm with globally optimal sub problems and super-linear convergence.
AbstractList Sparse coding has become an increasingly popular method in learning and vision for a variety of classification, reconstruction and coding tasks. The canonical approach intrinsically assumes independence between observations during learning. For many natural signals however, sparse coding is applied to sub-elements ( i.e. patches) of the signal, where such an assumption is invalid. Convolutional sparse coding explicitly models local interactions through the convolution operator, however the resulting optimization problem is considerably more complex than traditional sparse coding. In this paper, we draw upon ideas from signal processing and Augmented Lagrange Methods (ALMs) to produce a fast algorithm with globally optimal sub problems and super-linear convergence.
Author Bristow, Hilton
Lucey, Simon
Eriksson, Anders
Author_xml – sequence: 1
  givenname: Hilton
  surname: Bristow
  fullname: Bristow, Hilton
  email: hilton.bristow@csiro.au
  organization: Queensland Univ. of Technol., Brisbane, QLD, Australia
– sequence: 2
  givenname: Anders
  surname: Eriksson
  fullname: Eriksson, Anders
  email: anders.eriksson@adelaide.edu.au
  organization: Univ. of Adelaide, Adelaide, SA, Australia
– sequence: 3
  givenname: Simon
  surname: Lucey
  fullname: Lucey, Simon
  email: simon.lucey@csiro.au
  organization: CSIRO, Sydney, NSW, Australia
BookMark eNpNj81Kw0AURkepYFu7c-cmL5D03hnn3pmlBFuFQsW_bUlnbiQSJyWJgm9vQReuvsNZHPhmapK6JEpdIhSI4Jfl68NjoQFNYflELTw7tMaRJdbmVE0RyOTk0U_-8bmaDcM7gDasYaqyVTWMWdmlr679HJsuVW32dKj6QY4yNuntQp3VVTvI4m_n6mV1-1ze5Zvt-r682eQNsh1zEi8MLiIDsSMMvuboooUQkD0K1QasQd6LDqSDuOvoXABd70WijtHM1dVvtxGR3aFvPqr-e0eEzh8P_gA4DkBd
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2013.57
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781538656723
1538656728
EISSN 1063-6919
EndPage 398
ExternalDocumentID 6618901
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-6e9e708d17067861c9f7d8d50cc1791e6f305317be2c62ce84d88c02fbeed2dd3
IEDL.DBID RIE
ISICitedReferencesCount 232
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331094300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Wed Aug 27 02:59:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-6e9e708d17067861c9f7d8d50cc1791e6f305317be2c62ce84d88c02fbeed2dd3
PageCount 8
ParticipantIDs ieee_primary_6618901
PublicationCentury 2000
PublicationDate 2013-June
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationTitle 2013 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0003211698
Score 2.4157615
Snippet Sparse coding has become an increasingly popular method in learning and vision for a variety of classification, reconstruction and coding tasks. The canonical...
SourceID ieee
SourceType Publisher
StartPage 391
SubjectTerms ADMM
Convergence
Convolution
Convolutional codes
deep learning
Encoding
Equations
fourier
Signal processing algorithms
sparse coding
Vectors
Title Fast Convolutional Sparse Coding
URI https://ieeexplore.ieee.org/document/6618901
WOSCitedRecordID wos000331094300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6s9NCTbbX0zR56bHTzTs5S6aGI9IU32U1mQSgquvr7m6zrlkIvvYWBDHnyTTKPD-BB5Nw6KzlBYSQRzAmSpwUSkQmU1NHQqWItedHjsZlO7aQFj00uDCJWwWfYj83Kl--Xbhu_ygYBS4yNyVpHWqt9rlbzn8LDS0bZxoPAIvtK5elUnChLbRP0bgfDz8lrDOriffmbVKXClFHnf6M5hd5Pcl4yaWDnDFq4OIdObU0m9V3dBNGBsOEg60IyyjZlEvTs6gOXfSVvq_C0xSCM2nrwMXp6Hz6TmiKBzAPul0ShRZ0aH4vgaKOos4X2xsvUuVh3FFXB4y3TOTKnmEMjvDEuZUUeBsm85xfQXiwXeAmJklIWhZCUq4BYKc2CQeuCPcRlHiDL2yvoxjWYrfZVMGb19K__Ft_ACdsTR5CU3kK7XG_xDo7drpxv1vfV1n0DsqeVkw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFfRUtRXf7sGjaXfz2uRcLBVrKVqlt7KbzEJB2tJu-_tNttsVwYu3MJAhT75J5vEBPPCUaaMFI8iVIJwaTtIwQ8ITjiIyketUsJYM4uFQTSZ6VIPHKhcGEYvgM2z7ZuHLtwuz8V9lHYclSvtkrQPBOQ132VrVjwpzbxmpKx8C9fwrha9TMiJ1pKuwd93pfo7efFgXa4vftCoFqvQa_xvPCbR-0vOCUQU8p1DD-Rk0SnsyKG_r2on2lA17WROCXrLOA6dnWx655Ct4X7rHLTqh19aCj97TuNsnJUkCmTnkz4lEjXGorC-DEysZGZ3FVlkRGuMrj6LMmL9ncYrUSGpQcauUCWmWukFSa9k51OeLOV5AIIUQWcZFxKTDrDBKnElrnEXEROpAy-pLaPo1mC53dTCm5fSv_hbfw1F__DqYDp6HL9dwTHc0EiSMbqCerzZ4C4dmm8_Wq7tiG78BsYKY2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Fast+Convolutional+Sparse+Coding&rft.au=Bristow%2C+Hilton&rft.au=Eriksson%2C+Anders&rft.au=Lucey%2C+Simon&rft.date=2013-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=391&rft.epage=398&rft_id=info:doi/10.1109%2FCVPR.2013.57&rft.externalDocID=6618901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon