Fast Convolutional Sparse Coding
Sparse coding has become an increasingly popular method in learning and vision for a variety of classification, reconstruction and coding tasks. The canonical approach intrinsically assumes independence between observations during learning. For many natural signals however, sparse coding is applied...
Uložené v:
| Vydané v: | 2013 IEEE Conference on Computer Vision and Pattern Recognition s. 391 - 398 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2013
|
| Predmet: | |
| ISSN: | 1063-6919, 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Sparse coding has become an increasingly popular method in learning and vision for a variety of classification, reconstruction and coding tasks. The canonical approach intrinsically assumes independence between observations during learning. For many natural signals however, sparse coding is applied to sub-elements ( i.e. patches) of the signal, where such an assumption is invalid. Convolutional sparse coding explicitly models local interactions through the convolution operator, however the resulting optimization problem is considerably more complex than traditional sparse coding. In this paper, we draw upon ideas from signal processing and Augmented Lagrange Methods (ALMs) to produce a fast algorithm with globally optimal sub problems and super-linear convergence. |
|---|---|
| AbstractList | Sparse coding has become an increasingly popular method in learning and vision for a variety of classification, reconstruction and coding tasks. The canonical approach intrinsically assumes independence between observations during learning. For many natural signals however, sparse coding is applied to sub-elements ( i.e. patches) of the signal, where such an assumption is invalid. Convolutional sparse coding explicitly models local interactions through the convolution operator, however the resulting optimization problem is considerably more complex than traditional sparse coding. In this paper, we draw upon ideas from signal processing and Augmented Lagrange Methods (ALMs) to produce a fast algorithm with globally optimal sub problems and super-linear convergence. |
| Author | Bristow, Hilton Lucey, Simon Eriksson, Anders |
| Author_xml | – sequence: 1 givenname: Hilton surname: Bristow fullname: Bristow, Hilton email: hilton.bristow@csiro.au organization: Queensland Univ. of Technol., Brisbane, QLD, Australia – sequence: 2 givenname: Anders surname: Eriksson fullname: Eriksson, Anders email: anders.eriksson@adelaide.edu.au organization: Univ. of Adelaide, Adelaide, SA, Australia – sequence: 3 givenname: Simon surname: Lucey fullname: Lucey, Simon email: simon.lucey@csiro.au organization: CSIRO, Sydney, NSW, Australia |
| BookMark | eNpNj81Kw0AURkepYFu7c-cmL5D03hnn3pmlBFuFQsW_bUlnbiQSJyWJgm9vQReuvsNZHPhmapK6JEpdIhSI4Jfl68NjoQFNYflELTw7tMaRJdbmVE0RyOTk0U_-8bmaDcM7gDasYaqyVTWMWdmlr679HJsuVW32dKj6QY4yNuntQp3VVTvI4m_n6mV1-1ze5Zvt-r682eQNsh1zEi8MLiIDsSMMvuboooUQkD0K1QasQd6LDqSDuOvoXABd70WijtHM1dVvtxGR3aFvPqr-e0eEzh8P_gA4DkBd |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2013.57 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 9781538656723 1538656728 |
| EISSN | 1063-6919 |
| EndPage | 398 |
| ExternalDocumentID | 6618901 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-i175t-6e9e708d17067861c9f7d8d50cc1791e6f305317be2c62ce84d88c02fbeed2dd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 232 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331094300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Wed Aug 27 02:59:40 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-6e9e708d17067861c9f7d8d50cc1791e6f305317be2c62ce84d88c02fbeed2dd3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_6618901 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-June |
| PublicationDateYYYYMMDD | 2013-06-01 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE Conference on Computer Vision and Pattern Recognition |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023720 ssj0003211698 |
| Score | 2.4157615 |
| Snippet | Sparse coding has become an increasingly popular method in learning and vision for a variety of classification, reconstruction and coding tasks. The canonical... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 391 |
| SubjectTerms | ADMM Convergence Convolution Convolutional codes deep learning Encoding Equations fourier Signal processing algorithms sparse coding Vectors |
| Title | Fast Convolutional Sparse Coding |
| URI | https://ieeexplore.ieee.org/document/6618901 |
| WOSCitedRecordID | wos000331094300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6s9NCTbbX0zR56bHTzTs5S6aGI9IU32U1mQSgquvr7m6zrlkIvvYWBDHnyTTKPD-BB5Nw6KzlBYSQRzAmSpwUSkQmU1NHQqWItedHjsZlO7aQFj00uDCJWwWfYj83Kl--Xbhu_ygYBS4yNyVpHWqt9rlbzn8LDS0bZxoPAIvtK5elUnChLbRP0bgfDz8lrDOriffmbVKXClFHnf6M5hd5Pcl4yaWDnDFq4OIdObU0m9V3dBNGBsOEg60IyyjZlEvTs6gOXfSVvq_C0xSCM2nrwMXp6Hz6TmiKBzAPul0ShRZ0aH4vgaKOos4X2xsvUuVh3FFXB4y3TOTKnmEMjvDEuZUUeBsm85xfQXiwXeAmJklIWhZCUq4BYKc2CQeuCPcRlHiDL2yvoxjWYrfZVMGb19K__Ft_ACdsTR5CU3kK7XG_xDo7drpxv1vfV1n0DsqeVkw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFfRUtRXf7sGjaXfz2uRcLBVrKVqlt7KbzEJB2tJu-_tNttsVwYu3MJAhT75J5vEBPPCUaaMFI8iVIJwaTtIwQ8ITjiIyketUsJYM4uFQTSZ6VIPHKhcGEYvgM2z7ZuHLtwuz8V9lHYclSvtkrQPBOQ132VrVjwpzbxmpKx8C9fwrha9TMiJ1pKuwd93pfo7efFgXa4vftCoFqvQa_xvPCbR-0vOCUQU8p1DD-Rk0SnsyKG_r2on2lA17WROCXrLOA6dnWx655Ct4X7rHLTqh19aCj97TuNsnJUkCmTnkz4lEjXGorC-DEysZGZ3FVlkRGuMrj6LMmL9ncYrUSGpQcauUCWmWukFSa9k51OeLOV5AIIUQWcZFxKTDrDBKnElrnEXEROpAy-pLaPo1mC53dTCm5fSv_hbfw1F__DqYDp6HL9dwTHc0EiSMbqCerzZ4C4dmm8_Wq7tiG78BsYKY2g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Fast+Convolutional+Sparse+Coding&rft.au=Bristow%2C+Hilton&rft.au=Eriksson%2C+Anders&rft.au=Lucey%2C+Simon&rft.date=2013-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=391&rft.epage=398&rft_id=info:doi/10.1109%2FCVPR.2013.57&rft.externalDocID=6618901 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |