Data Privacy for a ρ-Recoverable Function
A user's data is represented by a finite-valued random variable. Given a function of the data, a querier is required to recover, with at least a prescribed probability, the value of the function based on a query response provided by the user. The user devises the query response, subject to the...
Uloženo v:
| Vydáno v: | 2018 IEEE International Symposium on Information Theory (ISIT) s. 1046 - 1050 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2018
|
| Témata: | |
| ISSN: | 2157-8117 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A user's data is represented by a finite-valued random variable. Given a function of the data, a querier is required to recover, with at least a prescribed probability, the value of the function based on a query response provided by the user. The user devises the query response, subject to the recoverability requirement, so as to maximize privacy of the data from the querier. Privacy is measured by the probability of error incurred by the querier in estimating the data from the query response. We analyze single and multiple independent query responses, with each response satisfying the recoverability requirement, that provide maximum privacy to the user. Achievability schemes with explicit randomization mechanisms for query responses are given and their privacy compared with converse upper bounds. |
|---|---|
| AbstractList | A user's data is represented by a finite-valued random variable. Given a function of the data, a querier is required to recover, with at least a prescribed probability, the value of the function based on a query response provided by the user. The user devises the query response, subject to the recoverability requirement, so as to maximize privacy of the data from the querier. Privacy is measured by the probability of error incurred by the querier in estimating the data from the query response. We analyze single and multiple independent query responses, with each response satisfying the recoverability requirement, that provide maximum privacy to the user. Achievability schemes with explicit randomization mechanisms for query responses are given and their privacy compared with converse upper bounds. |
| Author | Nageswaran, Ajaykrishnan Narayan, Prakash |
| Author_xml | – sequence: 1 givenname: Ajaykrishnan surname: Nageswaran fullname: Nageswaran, Ajaykrishnan email: ajayk@umd.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA – sequence: 2 givenname: Prakash surname: Narayan fullname: Narayan, Prakash email: prakash@umd.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA |
| BookMark | eNotz81Kw0AUQOFRFKw1DyBuZi0knTt_d2Yp1WqgUNG6LpPpHYjURCax0KVP6Csp2NW3O3Au2VnXd8TYNYgKQPhZ_VqvKynAVU4rVBJPWOHRgVHO6j_VKZtIMFg6ALxgxTC8CyGkddp6mLDb-zAG_pzbfYgHnvrMA__5Ll8o9nvKodkRX3x1cWz77oqdp7AbqDg6ZW-Lh_X8qVyuHuv53bJsAc1Y2uBFlKQjovaGbGO3W4hkkkYdVRO0I5IRlVaSkjWJEkoRjSFvEYGkmrKb_25LRJvP3H6EfNgc79QvKGpD8w |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ISIT.2018.8437327 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781538647813 1538647818 |
| EISSN | 2157-8117 |
| EndPage | 1050 |
| ExternalDocumentID | 8437327 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IK 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i175t-6a90c2e4c77495e6b6dd1ce5f474c3ba48ee2c73432ef65fef720c55e96771e23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448139300210&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 05:59:56 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-6a90c2e4c77495e6b6dd1ce5f474c3ba48ee2c73432ef65fef720c55e96771e23 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8437327 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-June |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE International Symposium on Information Theory (ISIT) |
| PublicationTitleAbbrev | ISIT |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002684691 ssj0037302 |
| Score | 1.6827941 |
| Snippet | A user's data is represented by a finite-valued random variable. Given a function of the data, a querier is required to recover, with at least a prescribed... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1046 |
| SubjectTerms | Chernoff radius function computation Information theory Measurement uncertainty Privacy recoverability Upper bound Zinc |
| Title | Data Privacy for a ρ-Recoverable Function |
| URI | https://ieeexplore.ieee.org/document/8437327 |
| WOSCitedRecordID | wos000448139300210&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3a4sFT1Vb8Zg-exLTZ7G5mc1YXC1IKVuitZLMT6KWVui149Bf6l0x214rgxVsIISSZJG-SmTcDcJ2K0KLTK5iNjGTu9ouYJs0ZRZy4TTUvdCXpJxyP09lMTVpwu-PCEFHlfEYDX6xs-cXKbPxX2TD1cXgEtqGNiDVXa_ef4qOWVHFf6lvYNeSisWKGXA1Hz6Opd-RKB00nv7KpVGCSdf83jAPo_7DygskObw6hRcsj6H6nZQiaU9qDm3tdatdysdXmPXBKaaCDzw_mH5pu33qqVJA5NPMS6cNL9jC9e2RNSgS2cDhfMqkVN4Ji47Q2lZDMZVGEhhIbY2yiXMcpkTDo2aJkZWLJouAmSUhJxJBEdAyd5WpJJxCYXDuwtlJHCcaFQJWjMcpnq3KvRGv5KfT81OevddSLeTPrs7-rz2Hfr27tRHUBnXK9oUvYM9ty8ba-qkT1BWdykvg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qFfRUtRW_zcGTmDabzW42Z7W0WEvBCr2VbHYCvbRStwWP_kL_ksnuWhG8eAshhCST5E0y82YArhMeWOn0CmpDE1N3-4VUo2YUQ4bMJpplupD0QA6HyWSiRjW43XBhELFwPsO2Lxa2_GxhVv6rrJP4ODxcbsF2JAQPSrbW5kfFxy0pIr-U97BrynhlxwyY6vSf-2PvypW0q25-5VMp4KTb-N9A9qH1w8sjow3iHEAN54fQ-E7MQKpz2oSbe51r13K21uadOLWUaPL5Qf1T0-1cT5YiXYdnXiYteOk-jO96tEqKQGcO6XMaa8UMR2Gc3qYijNM4ywKDkRVSmDDVIkHkRnq-KNo4smglZyaKUMVSBsjDI6jPF3M8BmJS7eDaxjqMpMi4VKk0Rvl8Ve6daC07gaaf-vS1jHsxrWZ9-nf1Fez2xk-D6aA_fDyDPb_SpUvVOdTz5QovYMes89nb8rIQ2xdAq5Y_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Symposium+on+Information+Theory+%28ISIT%29&rft.atitle=Data+Privacy+for+a+%CF%81-Recoverable+Function&rft.au=Nageswaran%2C+Ajaykrishnan&rft.au=Narayan%2C+Prakash&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=2157-8117&rft.spage=1046&rft.epage=1050&rft_id=info:doi/10.1109%2FISIT.2018.8437327&rft.externalDocID=8437327 |