Safety in the Face of Unknown Unknowns: Algorithm Fusion in Data-driven Engineering Systems

Most current machine learning algorithms make highly confident yet incorrect classifications when faced with unexpected test samples from an unknown distribution different from training; such epistemic uncertainty (unknown unknowns) can have catastrophic safety implications. In this conceptual paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) S. 8162 - 8166
Hauptverfasser: Kshetry, Nina, Varshney, Lav R.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.05.2019
Schlagworte:
ISSN:2379-190X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most current machine learning algorithms make highly confident yet incorrect classifications when faced with unexpected test samples from an unknown distribution different from training; such epistemic uncertainty (unknown unknowns) can have catastrophic safety implications. In this conceptual paper, we propose a method to leverage engineering science knowledge to control epistemic uncertainty and maintain decision safety. The basic idea is an algorithm fusion approach that combines data-driven learned models with physical system knowledge, to operate between the extremes of purely data-driven classifiers and purely engineering science rules. This facilitates the safe operation of data-driven engineering systems, such as wastewater treatment plants.
ISSN:2379-190X
DOI:10.1109/ICASSP.2019.8683392