Safety in the Face of Unknown Unknowns: Algorithm Fusion in Data-driven Engineering Systems

Most current machine learning algorithms make highly confident yet incorrect classifications when faced with unexpected test samples from an unknown distribution different from training; such epistemic uncertainty (unknown unknowns) can have catastrophic safety implications. In this conceptual paper...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 8162 - 8166
Hlavní autoři: Kshetry, Nina, Varshney, Lav R.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2019
Témata:
ISSN:2379-190X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Most current machine learning algorithms make highly confident yet incorrect classifications when faced with unexpected test samples from an unknown distribution different from training; such epistemic uncertainty (unknown unknowns) can have catastrophic safety implications. In this conceptual paper, we propose a method to leverage engineering science knowledge to control epistemic uncertainty and maintain decision safety. The basic idea is an algorithm fusion approach that combines data-driven learned models with physical system knowledge, to operate between the extremes of purely data-driven classifiers and purely engineering science rules. This facilitates the safe operation of data-driven engineering systems, such as wastewater treatment plants.
AbstractList Most current machine learning algorithms make highly confident yet incorrect classifications when faced with unexpected test samples from an unknown distribution different from training; such epistemic uncertainty (unknown unknowns) can have catastrophic safety implications. In this conceptual paper, we propose a method to leverage engineering science knowledge to control epistemic uncertainty and maintain decision safety. The basic idea is an algorithm fusion approach that combines data-driven learned models with physical system knowledge, to operate between the extremes of purely data-driven classifiers and purely engineering science rules. This facilitates the safe operation of data-driven engineering systems, such as wastewater treatment plants.
Author Kshetry, Nina
Varshney, Lav R.
Author_xml – sequence: 1
  givenname: Nina
  surname: Kshetry
  fullname: Kshetry, Nina
  email: nina@ensaras.com
  organization: Ensaras, Inc., Champaign, IL, USA
– sequence: 2
  givenname: Lav R.
  surname: Varshney
  fullname: Varshney, Lav R.
  email: varshney@illinois.edu
  organization: Ensaras, Inc., Champaign, IL, USA
BookMark eNo1kNFKwzAYhaMouM09wW7yAq35k3ZNvBtzVWGgUAeCFyNt_nTRNZWmKn17N5w357s6h3POmFz41iMhM2AxAFM3j8tFUTzHnIGK5VwKofgZmapMQpIpJUEAnJMRF5mKQLHXKzIO4Z0xJrNEjshboS32A3We9jukua6QtpZu_Idvf_w_wy1d7Ou2c_2uoflXcK0_Ou50ryPTuW_0dOVr5xE752taDKHHJlyTS6v3AacnTsgmX70sH6L10_2h9TpykKV9NNeJTWVylLKUzFSQmhQEs1xXIBEPK02pjElspRIurMZKWmBlZSy3WcnFhMz-ch0ibj871-hu2J6-EL87sFaZ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2019.8683392
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781479981311
1479981311
EISSN 2379-190X
EndPage 8166
ExternalDocumentID 8683392
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-6a4f5844f58bb80dc15d5130f2ac18ee110db9dd4fc9423faec8f10bcdf2f7b23
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482554008080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:33:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-6a4f5844f58bb80dc15d5130f2ac18ee110db9dd4fc9423faec8f10bcdf2f7b23
PageCount 5
ParticipantIDs ieee_primary_8683392
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.1085644
Snippet Most current machine learning algorithms make highly confident yet incorrect classifications when faced with unexpected test samples from an unknown...
SourceID ieee
SourceType Publisher
StartPage 8162
SubjectTerms AI safety
algorithm fusion
Data models
epistemic uncertainty
Knowledge engineering
metacognition
Safety
Sensors
Training
Uncertainty
Wastewater
wastewater treatment
Title Safety in the Face of Unknown Unknowns: Algorithm Fusion in Data-driven Engineering Systems
URI https://ieeexplore.ieee.org/document/8683392
WOSCitedRecordID wos000482554008080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEvPlrxTQ4ejd13st5KdVGQUqiVgoeSpy7ormy3gv_eZHetFbx4SUJgEpgJmclk5huAc1cr32E0xHEYCBwwGWIaUh_7kQ6I9njsVLlVj_dkNKKzWTxuwcUqF0YpVQWfqUs7rP7yZS6W1lXWpxH1jT5vQ5uQqM7VWt26lAS0QRVynbh_NxxMJmMbumXOQk32q35KpT6S7f9tvAO9nzw8NF5pmF1oqWwPttYgBLvwNGFalZ8ozZAx5VDCDEmu0TSzzrLsu19cocHrc16k5csbSpbWQ2YprlnJsCzshYfWVkUNjHkPpsnNw_AWNwUTcGqsgBJHLNDGoLAN59SRwg1laJSU9phwqVKGM5LHUgZaxMaM0kwJql2HC6k9Tbjn70MnyzN1AIgyoXUoOOHaAu5LaulExKSn7IstOoSuZdP8vcbEmDccOvp7-hg2rSTqQMET6JTFUp3Chvgo00VxVgnyC6AhoYQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSLj1Z8m4NHY_e9WW-lWlqspdBWCh5Knrqgu7LdCv57k-1aK3jxkoTAJDATMpPJzDcAl7aSrkWJjyPf49ijwsfEJy52A-WFymGRVeRWPfbCfp9MJtGgAlfLXBgpZRF8Jq_NsPjLFymfG1dZgwTE1fp8DdZN5awyW2t575LQIyWukG1FjW6rORwOTPCWPg0Lwl8VVAoF0t7539a7UP_JxEODpY7Zg4pM9mF7BUSwBk9DqmT-ieIEaWMOtakmSRUaJ8Zdlnz3sxvUfH1Oszh_eUPtufGRGYpbmlMsMnPloZVVUQlkXodx-27U6uCyZAKOtR2Q44B6SpsUpmGMWILbvvC1mlIO5TaRUnNGsEgIT_FIG1KKSk6UbTEulKNC5rgHUE3SRB4CIpQr5XMWMmUg9wUxdDygwpHmzRYcQc2wafq-QMWYlhw6_nv6AjY7o4fetNft35_AlpHKImzwFKp5NpdnsME_8niWnRdC_QI1nqTN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Safety+in+the+Face+of+Unknown+Unknowns%3A+Algorithm+Fusion+in+Data-driven+Engineering+Systems&rft.au=Kshetry%2C+Nina&rft.au=Varshney%2C+Lav+R.&rft.date=2019-05-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=8162&rft.epage=8166&rft_id=info:doi/10.1109%2FICASSP.2019.8683392&rft.externalDocID=8683392