Dynamic movement primitives in latent space of time-dependent variational autoencoders

Dynamic movement primitives (DMPs) are powerful for the generalization of movements from demonstration. However, high dimensional movements, as they are found in robotics, make finding efficient DMP representations difficult. Typically, they are either used in configuration or Cartesian space, but b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE-RAS International Conference on Humanoid Robots (Print) s. 629 - 636
Hlavní autoři: Nutan Chen, Karl, Maximilian, van der Smagt, Patrick
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2016
Témata:
ISSN:2164-0580
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Dynamic movement primitives (DMPs) are powerful for the generalization of movements from demonstration. However, high dimensional movements, as they are found in robotics, make finding efficient DMP representations difficult. Typically, they are either used in configuration or Cartesian space, but both approaches do not generalize well. Additionally, limiting DMPs to single demonstrations restricts their generalization capabilities. In this paper, we explore a method that embeds DMPs into the latent space of a time-dependent variational autoencoder framework. Our method enables the representation of high-dimensional movements in a low-dimensional latent space. Experimental results show that our framework has excellent generalization in the latent space, e.g., switching between movements or changing goals. Also, it generates optimal movements when reproducing the movements.
ISSN:2164-0580
DOI:10.1109/HUMANOIDS.2016.7803340