Latency-driven design for FPGA-based convolutional neural networks
In recent years, Convolutional Neural Networks (ConvNets) have become the quintessential component of several state-of-the-art Artificial Intelligence tasks. Across the spectrum of applications, the performance needs vary significantly, from high-throughput image recognition to the very low-latency...
Uloženo v:
| Vydáno v: | International Conference on Field-programmable Logic and Applications s. 1 - 8 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Ghent University
01.09.2017
|
| Témata: | |
| ISSN: | 1946-1488 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In recent years, Convolutional Neural Networks (ConvNets) have become the quintessential component of several state-of-the-art Artificial Intelligence tasks. Across the spectrum of applications, the performance needs vary significantly, from high-throughput image recognition to the very low-latency requirements of autonomous cars. In this context, FPGAs can provide a potential platform that can be optimally configured based on different performance requirements. However, with the increasing complexity of ConvNet models, the architectural design space becomes overwhelmingly large, asking for principled design flows that address the application-level needs. This paper presents a latency-driven design methodology for mapping ConvNets on FPGAs. The proposed design flow employs novel transformations over a Synchronous Dataflow-based modelling framework together with a latency-centric optimisation procedure in order to efficiently explore the design space targeting low-latency designs. Quantitative evaluation shows large improvements in latency when latency-driven optimisation is in place yielding designs that improve the latency of AlexNet by 73.54× and VGG16 by 5.61× over throughput-optimised designs. |
|---|---|
| AbstractList | In recent years, Convolutional Neural Networks (ConvNets) have become the quintessential component of several state-of-the-art Artificial Intelligence tasks. Across the spectrum of applications, the performance needs vary significantly, from high-throughput image recognition to the very low-latency requirements of autonomous cars. In this context, FPGAs can provide a potential platform that can be optimally configured based on different performance requirements. However, with the increasing complexity of ConvNet models, the architectural design space becomes overwhelmingly large, asking for principled design flows that address the application-level needs. This paper presents a latency-driven design methodology for mapping ConvNets on FPGAs. The proposed design flow employs novel transformations over a Synchronous Dataflow-based modelling framework together with a latency-centric optimisation procedure in order to efficiently explore the design space targeting low-latency designs. Quantitative evaluation shows large improvements in latency when latency-driven optimisation is in place yielding designs that improve the latency of AlexNet by 73.54× and VGG16 by 5.61× over throughput-optimised designs. |
| Author | Venieris, Stylianos I. Bouganis, Christos-Savvas |
| Author_xml | – sequence: 1 givenname: Stylianos I. surname: Venieris fullname: Venieris, Stylianos I. email: stylianos.venieris10@imperial.ac.uk – sequence: 2 givenname: Christos-Savvas surname: Bouganis fullname: Bouganis, Christos-Savvas email: christos-savvas.bouganis@imperial.ac.uk |
| BookMark | eNotj81KAzEYAKMo2NY-gHjZF8ia_02OtbhVWLAHPZds8q1E10SSbaVvr2jnMreBmaOLmCIgdENJzbih5q7ddjUjtKk1kUozfYbmhhjCiWCanaMZNUJhKrS-QstS3skvUjRaqhm67-wE0R2xz-EAsfJQwlushpSrdrtZ4d4W8JVL8ZDG_RRStGMVYZ__NH2n_FGu0eVgxwLLkxfotX14WT_i7nnztF51ONBGTlgpqQeroOm94c4A00CE89xIJhvuhdXe-d4TJj3nhgnee-ZcD855xyzVfIFu_7sBAHZfOXzafNydlvkPleRNBQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/FPL.2017.8056828 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9090304282 9789090304281 |
| EISSN | 1946-1488 |
| EndPage | 8 |
| ExternalDocumentID | 8056828 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-6658fa6e7bd93c9e28e04cd3952573d4a8dcdbd025d339243bd2ccbeccdc2a183 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426989400073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:39 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-6658fa6e7bd93c9e28e04cd3952573d4a8dcdbd025d339243bd2ccbeccdc2a183 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_8056828 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Sept. |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | International Conference on Field-programmable Logic and Applications |
| PublicationTitleAbbrev | FPL |
| PublicationYear | 2017 |
| Publisher | Ghent University |
| Publisher_xml | – name: Ghent University |
| SSID | ssj0000547856 |
| Score | 2.0267925 |
| Snippet | In recent years, Convolutional Neural Networks (ConvNets) have become the quintessential component of several state-of-the-art Artificial Intelligence tasks.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Biological system modeling Computational modeling Convolution Feature extraction Field programmable gate arrays Machine learning Space exploration |
| Title | Latency-driven design for FPGA-based convolutional neural networks |
| URI | https://ieeexplore.ieee.org/document/8056828 |
| WOSCitedRecordID | wos000426989400073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGTSiu-ycGj6WOzu0mOKq4eStmDQm9lNpNCQVrpQ_Dfm8kuFcGLp4TAsuSx-32Z-WYG4JYyTHVWoTSUaRkQwsuKPYXzylCO6IcGMRab0JOJmU5t2YK7fSyM9z6Kz3yfu9GXTyu3Y1PZwAS0DjeENrS11nWs1t6eMuTEVFleOy4TZUd2UJRj1m7pfvPcrwIqET-Ko_-9-Rh6P4F4otxDzAm0_LILD2Nkovslac2_KkFRhCEC-xRF-XwvGZhIsJy8OVb4LjhtZWyi6HvTg7fi6fXxRTalEOQi4PtW5oEozDH3uiKrnPWJ8cPUkbKczFRRioYcVRQIDKnAeFJVUeIc7w-5BMNnewqd5Wrpz0AYleuELLFJLa1GGpXLjHXWKEQMN7Jz6PL8Zx91totZM_WLv4cv4ZCXuFZdXUFnu975azhwn9vFZn0Tt-gb25-T7w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opv9-DR9LHZR3JUca24lj1U6K3MZlIQpJU-BP-9mexSEbx4SggsSx6735eZb2YArinGKI1LFIriVDiEsKJkT-G0VJQg2p5C9MUm0uFQjce6aMDNJhbGWuvFZ7bDXe_Lp7lZs6msqxxauxvCFmzHURT2q2itjUWlx6mp4qRyXYZS93U3K3JWb6Wd-slfJVQ8gmT7_3v3AbR_QvGCYgMyh9Cwsxbc5chU90vQgn9WAXkZRuD4Z5AVj7eCoYkCFpTXBwvfA05c6Rsv-1624TV7GN0PRF0MQbw5hF-JxFGFKSY2LUlLo22obC8yJDWnM5UUoSJDJTkKQ9JxnkiWFBrDO0QmRPfhHkFzNp_ZYwiUTNKQNLFRLSr7KUoTK220kojo7mQn0OL5Tz6qfBeTeuqnfw9fwe5g9JJP8qfh8xns8XJXGqxzaK4Wa3sBO-Zz9bZcXPrt-ga-mJc2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Field-programmable+Logic+and+Applications&rft.atitle=Latency-driven+design+for+FPGA-based+convolutional+neural+networks&rft.au=Venieris%2C+Stylianos+I.&rft.au=Bouganis%2C+Christos-Savvas&rft.date=2017-09-01&rft.pub=Ghent+University&rft.eissn=1946-1488&rft.spage=1&rft.epage=8&rft_id=info:doi/10.23919%2FFPL.2017.8056828&rft.externalDocID=8056828 |