Linear sparse arrays designed by dynamic constrained multi-objective evolutionary algorithm
The design of linear sparse array is a constrained multi-objective optimization problem(CMOP). There are three objectives: minimization of peak sidelobe level(PSLL), half-power beam width(HPBW) and spatial aperture. The amplitude coefficients of elements and sensor positions of the array are decisio...
Uložené v:
| Vydané v: | 2014 IEEE Congress on Evolutionary Computation (CEC) s. 3067 - 3072 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.07.2014
|
| Predmet: | |
| ISSN: | 1089-778X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The design of linear sparse array is a constrained multi-objective optimization problem(CMOP). There are three objectives: minimization of peak sidelobe level(PSLL), half-power beam width(HPBW) and spatial aperture. The amplitude coefficients of elements and sensor positions of the array are decision variables. Dynamic constrained multi-objective evolutionary algorithm(DCMOEA) is used to design linear sparse arrays in this paper. It makes a difference that the output is a set of Pareto solutions (antenna arrays), not just only one solution. The users can choose an array from the set to meet their preferences for low PSLL, small HPBW, small spatial aperture or a trade-off among them. Experimental results showed that the DCMOEA performs better than peer state-of-art algorithms referred in this paper, especially on the arrays' spatial aperture optimization. |
|---|---|
| ISSN: | 1089-778X |
| DOI: | 10.1109/CEC.2014.6900448 |