Exploiting Task-Based Parallelism for Parallel Discrete Event Simulation

Today large-scale simulation applications are becoming common in research and industry. A significant fraction of them run on multi-core clusters. Current parallel simulation kernels use multi-process and multi-thread to exploit inter-node parallelism and intra-node parallelism on multi-core cluster...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - Euromicro Workshop on Parallel and Distributed Processing s. 562 - 566
Hlavní autoři: Wang, Yizhuo, Gao, Zhiwei, Ji, Weixing, Zhang, Han, Qing, Duzheng
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.03.2018
Témata:
ISSN:2377-5750
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Today large-scale simulation applications are becoming common in research and industry. A significant fraction of them run on multi-core clusters. Current parallel simulation kernels use multi-process and multi-thread to exploit inter-node parallelism and intra-node parallelism on multi-core clusters. We exploit task-base parallelism in parallel discrete event simulation (PDES) kernels, which is more fine-grained than thread-level and process-level parallelism. In our system, every simulation event is wrapped to a task. Work-stealing task scheduling scheme is applied to achieve dynamic load balancing among the multi-cores, and a graph partitioning approach is applied in partitioning simulation entities among the cluster nodes. Experimental results show that our PDES kernel outperforms existing PDES kernels by fully exploiting task parallelism.
ISSN:2377-5750
DOI:10.1109/PDP2018.2018.00095