Exploiting Task-Based Parallelism for Parallel Discrete Event Simulation
Today large-scale simulation applications are becoming common in research and industry. A significant fraction of them run on multi-core clusters. Current parallel simulation kernels use multi-process and multi-thread to exploit inter-node parallelism and intra-node parallelism on multi-core cluster...
Uloženo v:
| Vydáno v: | Proceedings - Euromicro Workshop on Parallel and Distributed Processing s. 562 - 566 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.03.2018
|
| Témata: | |
| ISSN: | 2377-5750 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Today large-scale simulation applications are becoming common in research and industry. A significant fraction of them run on multi-core clusters. Current parallel simulation kernels use multi-process and multi-thread to exploit inter-node parallelism and intra-node parallelism on multi-core clusters. We exploit task-base parallelism in parallel discrete event simulation (PDES) kernels, which is more fine-grained than thread-level and process-level parallelism. In our system, every simulation event is wrapped to a task. Work-stealing task scheduling scheme is applied to achieve dynamic load balancing among the multi-cores, and a graph partitioning approach is applied in partitioning simulation entities among the cluster nodes. Experimental results show that our PDES kernel outperforms existing PDES kernels by fully exploiting task parallelism. |
|---|---|
| ISSN: | 2377-5750 |
| DOI: | 10.1109/PDP2018.2018.00095 |