Renormalization group flow in k-space for nonlinear filters, Bayesian decisions and transport

We derive a new algorithm which avoids normalization of the probability density for particle flow. The algorithm was inspired by renormalization group flow in quantum field theory. In contrast with other particle flow algorithms, this one works in k-space rather than state space. We have roughly 30...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2015 18th International Conference on Information Fusion (Fusion) s. 1617 - 1624
Hlavní autori: Daum, Fred, Jim Huang
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: ISIF 01.07.2015
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We derive a new algorithm which avoids normalization of the probability density for particle flow. The algorithm was inspired by renormalization group flow in quantum field theory. In contrast with other particle flow algorithms, this one works in k-space rather than state space. We have roughly 30 or 40 algorithms to compute particle flow, and the three best algorithms avoid computing the normalization of the conditional probability density of the state. We explain why explicit normalization often spoils the flow. This phenomenon has been noticed by other researchers for completely different applications (e.g., weather prediction), but apparently the benefits of avoiding normalization are not well known.
AbstractList We derive a new algorithm which avoids normalization of the probability density for particle flow. The algorithm was inspired by renormalization group flow in quantum field theory. In contrast with other particle flow algorithms, this one works in k-space rather than state space. We have roughly 30 or 40 algorithms to compute particle flow, and the three best algorithms avoid computing the normalization of the conditional probability density of the state. We explain why explicit normalization often spoils the flow. This phenomenon has been noticed by other researchers for completely different applications (e.g., weather prediction), but apparently the benefits of avoiding normalization are not well known.
Author Jim Huang
Daum, Fred
Author_xml – sequence: 1
  givenname: Fred
  surname: Daum
  fullname: Daum, Fred
  email: daum@raytheon.com
  organization: Raytheon, Woburn, MA, USA
– sequence: 2
  surname: Jim Huang
  fullname: Jim Huang
  organization: Raytheon, Woburn, MA, USA
BookMark eNotzMtKAzEUgOEICmrtE7jJAzhwmutkqcUbFATRpZSTyYlEp8mQjEh9egu6-lf_d86Oc8l0xJbO9uB6oZTsjTlly9Y-AGDllLamP2Nvz5RL3eGYfnBOJfP3Wr4mHsfyzVPmn12bcCAeS-UHcEyZsPKYxplqu-I3uKeWMPNAQ2qHvXHMgc8Vc5tKnS_YScSx0fK_C_Z6d_uyfug2T_eP6-tNl1ZWz50ewCjhvQ0EHtAbD1FDHzwqjSKg0YN0BFHI4KJ3OmqLYrDCeoc9SCUX7PLPTUS0nWraYd1vrTDGapC_hThQhA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9780982443866
0982443862
EndPage 1624
ExternalDocumentID 7266750
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-5c0642bb7de0b0ab6b0f508dba45a2da65c39e0f23d9fb95f57a2c727b9a80343
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389523300213&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:43:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-5c0642bb7de0b0ab6b0f508dba45a2da65c39e0f23d9fb95f57a2c727b9a80343
PageCount 8
ParticipantIDs ieee_primary_7266750
PublicationCentury 2000
PublicationDate 2015-July
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-July
PublicationDecade 2010
PublicationTitle 2015 18th International Conference on Information Fusion (Fusion)
PublicationTitleAbbrev ICIF
PublicationYear 2015
Publisher ISIF
Publisher_xml – name: ISIF
SSID ssj0001945768
Score 1.6177367
Snippet We derive a new algorithm which avoids normalization of the probability density for particle flow. The algorithm was inspired by renormalization group flow in...
SourceID ieee
SourceType Publisher
StartPage 1617
SubjectTerms Accuracy
Approximation methods
extended Kalman filter
Fourier transforms
Mathematical model
Monge-Kantorovich optimal transport
nonlinear filter
Nonlinear filters
particle filter
particle flow
transport problem
Weather forecasting
Title Renormalization group flow in k-space for nonlinear filters, Bayesian decisions and transport
URI https://ieeexplore.ieee.org/document/7266750
WOSCitedRecordID wos000389523300213&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eCpait-k4PHRre7yWZzVSwepBRR6EVKPiawWLbS3Sr-e5PdtUXw4i3kEMKE5L2ZyZsBuIqtZSEdRT14OMpshFRxxqgaSWEFt7E2ddeSRzGZZLOZnHZguNHCIGL9-Qyvw7DO5dulWYdQ2Y3waCKCg74jRNpotbbxFMkCdf7VJKXGiHHvf6vvw2ArtiPTDYwcQAeLQ-i17JC0d6_sw-sTFoFgLlrlJKkFGcQtlp8kL8gb9W-DX8qTUFI09S_Uirg8ZMPLIblVXxj0ksS2TXVKogpLqp_a5gN4Gd8_3z3QtjkCzT3iV5Sb4DpoLSxGOlI61ZHzZMtqxbiKrUq5SSRGLk6sdFpyx4WKjWcrWqosSlhyBF2_GzwGwrkViRlxi1nKRhFqYRimsXSe_HibZCfQD9aavzf1L-atoU7_nj6DPU8qePOl9Ry61WqNF7BrPqq8XF3Wh_YN09qd6g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1KFfRUtRW_zcFjo-lustlcFUvFWopU6EVKvhYWy1a6W8V_b7K7tghevIUcQpiQvDczeTMAV4Ex1KejsAOPBFNDLJaMUix7ghvOTKB02bVkyEejeDoV4wZ011oYa235-cxe-2GZyzcLvfKhshvu0IR7B32LORwllVprE1ER1JPnX21SSpTot_63_h50NnI7NF4DyT40bHYArZofovr25W14fbaZp5jzWjuJSkkGSuaLT5Rm6A2718Et5WgoyqoKGHKJktTnw_MuupVf1ismkanb6uRIZgYVP9XNO_DSv5_cDXDdHgGnDvMLzLR3HpTixhJFpIoUSRzdMkpSJgMjI6ZDYUkShEYkSrCEcRlox1eUkDEJaXgITbcbewSIMcND3WPGxhHtEau4pjYKROLoj7NJfAxtb63Ze1UBY1Yb6uTv6UvYGUyehrPhw-jxFHYdxWDVB9czaBbLlT2Hbf1RpPnyojzAbz6NoTc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+18th+International+Conference+on+Information+Fusion+%28Fusion%29&rft.atitle=Renormalization+group+flow+in+k-space+for+nonlinear+filters%2C+Bayesian+decisions+and+transport&rft.au=Daum%2C+Fred&rft.au=Jim+Huang&rft.date=2015-07-01&rft.pub=ISIF&rft.spage=1617&rft.epage=1624&rft.externalDocID=7266750