Feature extraction by incremental parsing for music indexing
In this paper, we employ a linguistic-processing approach to the content-based retrieval of music information. Central to the approach is the use of a lossy version of the Lempel-Ziv incremental parsing (LZIP) algorithm, which constructs a dictionary by incrementally parsing music feature vectors. L...
Saved in:
| Published in: | 2010 IEEE International Conference on Acoustics, Speech and Signal Processing pp. 2410 - 2413 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.03.2010
|
| Subjects: | |
| ISBN: | 9781424442959, 1424442958 |
| ISSN: | 1520-6149 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we employ a linguistic-processing approach to the content-based retrieval of music information. Central to the approach is the use of a lossy version of the Lempel-Ziv incremental parsing (LZIP) algorithm, which constructs a dictionary by incrementally parsing music feature vectors. LZIP is adopted as a source characterization technique owing to it's universal-coding nature, and asymptotic convergence to the entropy of the source. The dictionary is composed of variable-length parsed representations, which are used to construct a highly sparse co-occurrence matrix, which counts the occurrence of the parsed representations in each music. As a feature analysis framework, Latent Semantic Analysis (LSA) is then applied to the co-occurrence matrix to generate a lower-dimensional approximation that exposes the most salient features of the represented audio documents. The aforementioned approach, in addition to adopting reduced sampling rates and quantized feature vectors, yields a system with reduced requirements in terms of processing and storage, and increases the tolerance to noisy queries. We demonstrate the performance of the system in the music genre classification problem, and analyze its robustness to perturbed queries. Moreover, we demonstrate that using the incremental parsing algorithm in forming the audio dictionary has superior retrieval performance compared to techniques yielding a dictionary with fixed-length entries such as vector quantization. |
|---|---|
| AbstractList | In this paper, we employ a linguistic-processing approach to the content-based retrieval of music information. Central to the approach is the use of a lossy version of the Lempel-Ziv incremental parsing (LZIP) algorithm, which constructs a dictionary by incrementally parsing music feature vectors. LZIP is adopted as a source characterization technique owing to it's universal-coding nature, and asymptotic convergence to the entropy of the source. The dictionary is composed of variable-length parsed representations, which are used to construct a highly sparse co-occurrence matrix, which counts the occurrence of the parsed representations in each music. As a feature analysis framework, Latent Semantic Analysis (LSA) is then applied to the co-occurrence matrix to generate a lower-dimensional approximation that exposes the most salient features of the represented audio documents. The aforementioned approach, in addition to adopting reduced sampling rates and quantized feature vectors, yields a system with reduced requirements in terms of processing and storage, and increases the tolerance to noisy queries. We demonstrate the performance of the system in the music genre classification problem, and analyze its robustness to perturbed queries. Moreover, we demonstrate that using the incremental parsing algorithm in forming the audio dictionary has superior retrieval performance compared to techniques yielding a dictionary with fixed-length entries such as vector quantization. |
| Author | Soo Hyun Bae Almoosa, N I Biing-Hwang Juang |
| Author_xml | – sequence: 1 givenname: N I surname: Almoosa fullname: Almoosa, N I email: nawaf@ece.gatech.edu organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 2 surname: Soo Hyun Bae fullname: Soo Hyun Bae email: soohyun@ieee.org organization: Sony US Res. Center, San Jose, CA, USA – sequence: 3 surname: Biing-Hwang Juang fullname: Biing-Hwang Juang email: juang@ece.gatech.edu organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA |
| BookMark | eNpVT81KAzEYjFjBtvYJeskLbP2-NL_gRYpVoaBQPZfs10Qi3bRkt9C-vSv24mWGmYFhZsQGeZ8DY1OEGSK4-9fF43r9PhPQG0o6LaS6YhNnLEohpRRO6-t_WrkBG6ISUGmU7paN2vYbAKyRdsgelsF3xxJ4OHXFU5f2mddnnjKV0ITc-R0_-NKm_MXjvvDm2Cbq02049dYdu4l-14bJhcfsc_n0sXipVm_P_cxVldCorlLGRPQINVEUpGoEkgGIJHnjIkQto60Jo9r-orUukhCEtpakQYCYj9n0rzeFEDaHkhpfzpvL-fkPtTtOeg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICASSP.2010.5496245 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781424442966 1424442966 |
| EndPage | 2413 |
| ExternalDocumentID | 5496245 |
| Genre | orig-research |
| GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-577f1a10bccf2c5b10c4e0cc4ca79f0f64f8bc1f5dbc1f889fc22c18b4c602023 |
| IEDL.DBID | RIE |
| ISBN | 9781424442959 1424442958 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287096002091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-6149 |
| IngestDate | Wed Aug 27 02:43:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-577f1a10bccf2c5b10c4e0cc4ca79f0f64f8bc1f5dbc1f889fc22c18b4c602023 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_5496245 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-March |
| PublicationDateYYYYMMDD | 2010-03-01 |
| PublicationDate_xml | – month: 03 year: 2010 text: 2010-March |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 IEEE International Conference on Acoustics, Speech and Signal Processing |
| PublicationTitleAbbrev | ICASSP |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0008748 ssj0000452700 |
| Score | 1.7260821 |
| Snippet | In this paper, we employ a linguistic-processing approach to the content-based retrieval of music information. Central to the approach is the use of a lossy... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2410 |
| SubjectTerms | Content based retrieval Convergence Dictionaries Entropy Feature extraction incremental parsing Indexing Lempel-Ziv Music information retrieval Music retrieval Noise reduction Sampling methods Sparse matrices vector quantization |
| Title | Feature extraction by incremental parsing for music indexing |
| URI | https://ieeexplore.ieee.org/document/5496245 |
| WOSCitedRecordID | wos000287096002091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4Ne_LGJv8nBo3VtlzYJeJHhUJAxmMJuo3l9gYF2o9sE_3uTtJsKXryUNpeUBN738vK-7wO4pjRVupfkgdKYBVxlFCgL7IExKpVoEUZWO_0shkM5mahRA262XBgi8s1ndOte_V1-Pse1K5V17VkmjXnShKYQacXV2tZTnDS4l5qro7AU3jnLwpM7HnG1IXXZ-JvIjdZT_a1qOaIoVN2n_v14PKp6vur5fhmveNwZ7P_vjw-g803gY6MtNB1Cg4oj2PuhPdiGO5f8rUtiNjqXFbuB6U82K7CqGGZvbJH5SgKzeS17d37QzGsr2qEOvA4eXvqPQW2lEMxsfrAKEiFMlEWhRjQxJjoKkVOIyDETyoQm5UZqjEySu6eUymAcYyQ1xzR0DuvH0CrmBZ0A05T3dE6JyVDxXKLucYwN5VwIcuphp9B26zBdVGoZ03oJzv4ePofd6j7edXVdQGtVrukSdvBjNVuWV36LvwC-v6FU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKagXf0zxtzl4tK7t0jYBLzIcG84x2ITdRvP6AgPdRt0E_3uTtJsKXryUNpeUBN738vK-7wO4oTiWqhFlnlSYelym5EkD7J7WMhZoEEYUO91Nej0xGsl-BW7XXBgics1ndGdf3V1-NsOlLZXVzVkmDnm0AZvWOatka60rKlYc3InNlXFYJM47ywCUPSBxuaJ1mQgciZXaU_ktS0GiwJf1TvNhMOgXXV_ljL-sVxzytPb-98_7cPRN4WP9NTgdQIWmh7D7Q32wBvc2_VvmxEx8zgt-A1OfbDLFomaYvrJ56moJzGS27M06QjOnrmiGjuCl9Thstr3STMGbmAxh4UVJooM08BWiDjFSgY-cfESOaSK1r2OuhcJAR5l9CiE1hiEGQnGMfeuxfgzV6WxKJ8AUZQ2VUaRTlDwTqBocQ00ZTxKy-mGnULPrMJ4XehnjcgnO_h6-hu328Lk77nZ6T-ewU9zO2x6vC6gu8iVdwhZ-LCbv-ZXb7i9c_qSd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing&rft.atitle=Feature+extraction+by+incremental+parsing+for+music+indexing&rft.au=Almoosa%2C+N+I&rft.au=Soo+Hyun+Bae&rft.au=Biing-Hwang+Juang&rft.date=2010-03-01&rft.pub=IEEE&rft.isbn=9781424442959&rft.issn=1520-6149&rft.spage=2410&rft.epage=2413&rft_id=info:doi/10.1109%2FICASSP.2010.5496245&rft.externalDocID=5496245 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon |

