Feature extraction by incremental parsing for music indexing

In this paper, we employ a linguistic-processing approach to the content-based retrieval of music information. Central to the approach is the use of a lossy version of the Lempel-Ziv incremental parsing (LZIP) algorithm, which constructs a dictionary by incrementally parsing music feature vectors. L...

Full description

Saved in:
Bibliographic Details
Published in:2010 IEEE International Conference on Acoustics, Speech and Signal Processing pp. 2410 - 2413
Main Authors: Almoosa, N I, Soo Hyun Bae, Biing-Hwang Juang
Format: Conference Proceeding
Language:English
Published: IEEE 01.03.2010
Subjects:
ISBN:9781424442959, 1424442958
ISSN:1520-6149
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we employ a linguistic-processing approach to the content-based retrieval of music information. Central to the approach is the use of a lossy version of the Lempel-Ziv incremental parsing (LZIP) algorithm, which constructs a dictionary by incrementally parsing music feature vectors. LZIP is adopted as a source characterization technique owing to it's universal-coding nature, and asymptotic convergence to the entropy of the source. The dictionary is composed of variable-length parsed representations, which are used to construct a highly sparse co-occurrence matrix, which counts the occurrence of the parsed representations in each music. As a feature analysis framework, Latent Semantic Analysis (LSA) is then applied to the co-occurrence matrix to generate a lower-dimensional approximation that exposes the most salient features of the represented audio documents. The aforementioned approach, in addition to adopting reduced sampling rates and quantized feature vectors, yields a system with reduced requirements in terms of processing and storage, and increases the tolerance to noisy queries. We demonstrate the performance of the system in the music genre classification problem, and analyze its robustness to perturbed queries. Moreover, we demonstrate that using the incremental parsing algorithm in forming the audio dictionary has superior retrieval performance compared to techniques yielding a dictionary with fixed-length entries such as vector quantization.
AbstractList In this paper, we employ a linguistic-processing approach to the content-based retrieval of music information. Central to the approach is the use of a lossy version of the Lempel-Ziv incremental parsing (LZIP) algorithm, which constructs a dictionary by incrementally parsing music feature vectors. LZIP is adopted as a source characterization technique owing to it's universal-coding nature, and asymptotic convergence to the entropy of the source. The dictionary is composed of variable-length parsed representations, which are used to construct a highly sparse co-occurrence matrix, which counts the occurrence of the parsed representations in each music. As a feature analysis framework, Latent Semantic Analysis (LSA) is then applied to the co-occurrence matrix to generate a lower-dimensional approximation that exposes the most salient features of the represented audio documents. The aforementioned approach, in addition to adopting reduced sampling rates and quantized feature vectors, yields a system with reduced requirements in terms of processing and storage, and increases the tolerance to noisy queries. We demonstrate the performance of the system in the music genre classification problem, and analyze its robustness to perturbed queries. Moreover, we demonstrate that using the incremental parsing algorithm in forming the audio dictionary has superior retrieval performance compared to techniques yielding a dictionary with fixed-length entries such as vector quantization.
Author Soo Hyun Bae
Almoosa, N I
Biing-Hwang Juang
Author_xml – sequence: 1
  givenname: N I
  surname: Almoosa
  fullname: Almoosa, N I
  email: nawaf@ece.gatech.edu
  organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 2
  surname: Soo Hyun Bae
  fullname: Soo Hyun Bae
  email: soohyun@ieee.org
  organization: Sony US Res. Center, San Jose, CA, USA
– sequence: 3
  surname: Biing-Hwang Juang
  fullname: Biing-Hwang Juang
  email: juang@ece.gatech.edu
  organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
BookMark eNpVT81KAzEYjFjBtvYJeskLbP2-NL_gRYpVoaBQPZfs10Qi3bRkt9C-vSv24mWGmYFhZsQGeZ8DY1OEGSK4-9fF43r9PhPQG0o6LaS6YhNnLEohpRRO6-t_WrkBG6ISUGmU7paN2vYbAKyRdsgelsF3xxJ4OHXFU5f2mddnnjKV0ITc-R0_-NKm_MXjvvDm2Cbq02049dYdu4l-14bJhcfsc_n0sXipVm_P_cxVldCorlLGRPQINVEUpGoEkgGIJHnjIkQto60Jo9r-orUukhCEtpakQYCYj9n0rzeFEDaHkhpfzpvL-fkPtTtOeg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2010.5496245
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424442966
1424442966
EndPage 2413
ExternalDocumentID 5496245
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-577f1a10bccf2c5b10c4e0cc4ca79f0f64f8bc1f5dbc1f889fc22c18b4c602023
IEDL.DBID RIE
ISBN 9781424442959
1424442958
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287096002091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6149
IngestDate Wed Aug 27 02:43:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-577f1a10bccf2c5b10c4e0cc4ca79f0f64f8bc1f5dbc1f889fc22c18b4c602023
PageCount 4
ParticipantIDs ieee_primary_5496245
PublicationCentury 2000
PublicationDate 2010-March
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-March
PublicationDecade 2010
PublicationTitle 2010 IEEE International Conference on Acoustics, Speech and Signal Processing
PublicationTitleAbbrev ICASSP
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
ssj0000452700
Score 1.7260821
Snippet In this paper, we employ a linguistic-processing approach to the content-based retrieval of music information. Central to the approach is the use of a lossy...
SourceID ieee
SourceType Publisher
StartPage 2410
SubjectTerms Content based retrieval
Convergence
Dictionaries
Entropy
Feature extraction
incremental parsing
Indexing
Lempel-Ziv
Music information retrieval
Music retrieval
Noise reduction
Sampling methods
Sparse matrices
vector quantization
Title Feature extraction by incremental parsing for music indexing
URI https://ieeexplore.ieee.org/document/5496245
WOSCitedRecordID wos000287096002091&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4Ne_LGJv8nBo3VtlzYJeJHhUJAxmMJuo3l9gYF2o9sE_3uTtJsKXryUNpeUBN738vK-7wO4pjRVupfkgdKYBVxlFCgL7IExKpVoEUZWO_0shkM5mahRA262XBgi8s1ndOte_V1-Pse1K5V17VkmjXnShKYQacXV2tZTnDS4l5qro7AU3jnLwpM7HnG1IXXZ-JvIjdZT_a1qOaIoVN2n_v14PKp6vur5fhmveNwZ7P_vjw-g803gY6MtNB1Cg4oj2PuhPdiGO5f8rUtiNjqXFbuB6U82K7CqGGZvbJH5SgKzeS17d37QzGsr2qEOvA4eXvqPQW2lEMxsfrAKEiFMlEWhRjQxJjoKkVOIyDETyoQm5UZqjEySu6eUymAcYyQ1xzR0DuvH0CrmBZ0A05T3dE6JyVDxXKLucYwN5VwIcuphp9B26zBdVGoZ03oJzv4ePofd6j7edXVdQGtVrukSdvBjNVuWV36LvwC-v6FU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKagXf0zxtzl4tK7t0jYBLzIcG84x2ITdRvP6AgPdRt0E_3uTtJsKXryUNpeUBN738vK-7wO4oTiWqhFlnlSYelym5EkD7J7WMhZoEEYUO91Nej0xGsl-BW7XXBgics1ndGdf3V1-NsOlLZXVzVkmDnm0AZvWOatka60rKlYc3InNlXFYJM47ywCUPSBxuaJ1mQgciZXaU_ktS0GiwJf1TvNhMOgXXV_ljL-sVxzytPb-98_7cPRN4WP9NTgdQIWmh7D7Q32wBvc2_VvmxEx8zgt-A1OfbDLFomaYvrJ56moJzGS27M06QjOnrmiGjuCl9Thstr3STMGbmAxh4UVJooM08BWiDjFSgY-cfESOaSK1r2OuhcJAR5l9CiE1hiEGQnGMfeuxfgzV6WxKJ8AUZQ2VUaRTlDwTqBocQ00ZTxKy-mGnULPrMJ4XehnjcgnO_h6-hu328Lk77nZ6T-ewU9zO2x6vC6gu8iVdwhZ-LCbv-ZXb7i9c_qSd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing&rft.atitle=Feature+extraction+by+incremental+parsing+for+music+indexing&rft.au=Almoosa%2C+N+I&rft.au=Soo+Hyun+Bae&rft.au=Biing-Hwang+Juang&rft.date=2010-03-01&rft.pub=IEEE&rft.isbn=9781424442959&rft.issn=1520-6149&rft.spage=2410&rft.epage=2413&rft_id=info:doi/10.1109%2FICASSP.2010.5496245&rft.externalDocID=5496245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon