Multiobjective endmember extraction for hyperspectral image

Endmember extraction (EE) is one of the most important issues in hyperspectral mixture analysis, and it is also one of the most challenging tasks due to the intrinsic complexity of remote sensing images and the lack of priori knowledge. In recent years, a number of EE methods have been developed, an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE International Geoscience and Remote Sensing Symposium proceedings pp. 1161 - 1164
Main Authors: Rong Liu, Bo Du, Liangpei Zhang
Format: Conference Proceeding
Language:English
Published: IEEE 01.07.2017
Subjects:
ISSN:2153-7003
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Endmember extraction (EE) is one of the most important issues in hyperspectral mixture analysis, and it is also one of the most challenging tasks due to the intrinsic complexity of remote sensing images and the lack of priori knowledge. In recent years, a number of EE methods have been developed, and several different optimization objectives have been proposed from different perspectives. In all of these methods, there is only one objective function to be optimized, which represents a specific characteristic of the remote sensing image. However, one single-objective function may not provide satisfactory results because of the complexity of remote sensing images. In this paper, a multiobjective discrete particle swarm optimization algorithm (MODPSO) is utilized to tackle the problem of EE, where two objective functions, namely, volume maximization and root-mean-square error (RMSE) minimization are simultaneously optimized. The result set of Pareto-optimal solutions contains a number of non-dominated solutions, from which the user can judge relatively and pick up the most promising one according to the problem requirements. Experiments on two real hyperspectral images were conducted to evaluate the proposed MODPSO algorithm, which confirmed the effectiveness of the proposed algorithm.
AbstractList Endmember extraction (EE) is one of the most important issues in hyperspectral mixture analysis, and it is also one of the most challenging tasks due to the intrinsic complexity of remote sensing images and the lack of priori knowledge. In recent years, a number of EE methods have been developed, and several different optimization objectives have been proposed from different perspectives. In all of these methods, there is only one objective function to be optimized, which represents a specific characteristic of the remote sensing image. However, one single-objective function may not provide satisfactory results because of the complexity of remote sensing images. In this paper, a multiobjective discrete particle swarm optimization algorithm (MODPSO) is utilized to tackle the problem of EE, where two objective functions, namely, volume maximization and root-mean-square error (RMSE) minimization are simultaneously optimized. The result set of Pareto-optimal solutions contains a number of non-dominated solutions, from which the user can judge relatively and pick up the most promising one according to the problem requirements. Experiments on two real hyperspectral images were conducted to evaluate the proposed MODPSO algorithm, which confirmed the effectiveness of the proposed algorithm.
Author Bo Du
Rong Liu
Liangpei Zhang
Author_xml – sequence: 1
  surname: Rong Liu
  fullname: Rong Liu
  organization: State Key Lab. of Inf. Eng. in Surveying, Wuhan Univ., Wuhan, China
– sequence: 2
  surname: Bo Du
  fullname: Bo Du
  organization: Sch. of Comput., Wuhan Univ., Wuhan, China
– sequence: 3
  surname: Liangpei Zhang
  fullname: Liangpei Zhang
  organization: State Key Lab. of Inf. Eng. in Surveying, Wuhan Univ., Wuhan, China
BookMark eNotj91Kw0AUhFdRsK0-QW_yAonn7GZ3E7wqRWuhIli9LvtzVlPyxyaKfXsD9mqG4WOGmbOrtmuJsSVChgjl_XazetvvMw6oswK5RiUu2BwllJCXEvUlm3GUItUA4obNh-E4mYIDzNjDy3c9Vp09khurH0qo9Q01lmJCv2M0U9i1Sehi8nXqKQ79hEVTJ1VjPumWXQdTD3R31gX7eHp8Xz-nu9fNdr3apRVqOaZSYXBS8NwWxHkIygurvDa5l-SUyKW1WjnljdMQjPXWycLpwliRW6cAxYIt_3srIjr0cRqPp8P5qPgDx_RLSg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS.2017.8127163
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 1509049517
9781509049516
EISSN 2153-7003
EndPage 1164
ExternalDocumentID 8127163
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-561fc5324b8e22ff6d3b6d7a4d5ec6345bb76c6dac70fabdbc58c78ab34bc6013
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426954601079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:38:31 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-561fc5324b8e22ff6d3b6d7a4d5ec6345bb76c6dac70fabdbc58c78ab34bc6013
PageCount 4
ParticipantIDs ieee_primary_8127163
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.6591868
Snippet Endmember extraction (EE) is one of the most important issues in hyperspectral mixture analysis, and it is also one of the most challenging tasks due to the...
SourceID ieee
SourceType Publisher
StartPage 1161
SubjectTerms Complexity theory
endmember extraction
Hyperspectral imaging
Hyperspectral remote sensing
Linear programming
multi-objective
Optimization
Particle swarm optimization
Title Multiobjective endmember extraction for hyperspectral image
URI https://ieeexplore.ieee.org/document/8127163
WOSCitedRecordID wos000426954601079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAFHzUouDJj1b8JgePpk2zyW4WTyK2einFKvRW9uMtVmwqsRX8975NYkXw4i0shGV3YWZe8mYH4CJFX3SIKOyhYmFCjBJKwwyBYZrFrictOl2GTYjhMJtM5KgBl2svDCKWzWfY8Y_lv3y7MCv_qaxLZETynm3AhhC88mp9oy4jJovqW4V6kezeD64fxmPfuiU69Wu_8lNK-ujv_G_iXWj_-PCC0Zph9qCB-T5sDcow3s8WXJXu2YV-qUArwNzO0Qd8BIS4ReVYCEiUBs9UbFaeykK9BrM5YUgbnvq3jzd3YR2GEM6I4Zch6RxnUpI_OsM4do5bprkVKrEpGs6SVGvBDbfKiMgpbbVJMyMypVmiDVVd7ACa-SLHQwh4bDVzSqJ0ma_nJJ2j5LFKmEBST-wIWn4Lpm_VfRfTevXHfw-fwLbf5aqF9RSay2KFZ7BpPpaz9-K8PKQvGr6Ulg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGP2YU9EnL5t4tw8-2q1t2qbBJxF3wTmGm7C3kcsXnLhO6ib4703aOhF88a0ESkgC55yv_U4OwGWEtuignusjJ25oGMVlkkgDhlESaJ8p1CIPm6D9fjIes0EFrlZeGETMm8-wYR_zf_lqLpf2U1nTkJGR92QN1qMwDLzCrfWNu8RwmVfeK-R7rNlt3zwOh7Z5izbKF38lqOQE0tr539S7UP9x4jmDFcfsQQXTfdhs53G8nzW4zv2zc_FSwJaDqZqhjfhwDOZmhWfBMbLUeTblZuGqzPirM50ZFKnDU-tudNtxyzgEd2o4fuEapaNlZASQSDAItI4VEbGiPFQRypiEkRA0lrHiknqaCyVklEiacEFCIU3dRQ6gms5TPAQnDpQgmjNkOrEVHTMnyeKAh4Si0U_kCGp2CyZvxY0Xk3L1x38PX8BWZ_TQm_S6_fsT2LY7XjS0nkJ1kS3xDDbkx2L6np3nB_YFBImX3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Multiobjective+endmember+extraction+for+hyperspectral+image&rft.au=Rong+Liu&rft.au=Bo+Du&rft.au=Liangpei+Zhang&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=1161&rft.epage=1164&rft_id=info:doi/10.1109%2FIGARSS.2017.8127163&rft.externalDocID=8127163