Multiobjective endmember extraction for hyperspectral image
Endmember extraction (EE) is one of the most important issues in hyperspectral mixture analysis, and it is also one of the most challenging tasks due to the intrinsic complexity of remote sensing images and the lack of priori knowledge. In recent years, a number of EE methods have been developed, an...
Uloženo v:
| Vydáno v: | IEEE International Geoscience and Remote Sensing Symposium proceedings s. 1161 - 1164 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2017
|
| Témata: | |
| ISSN: | 2153-7003 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Endmember extraction (EE) is one of the most important issues in hyperspectral mixture analysis, and it is also one of the most challenging tasks due to the intrinsic complexity of remote sensing images and the lack of priori knowledge. In recent years, a number of EE methods have been developed, and several different optimization objectives have been proposed from different perspectives. In all of these methods, there is only one objective function to be optimized, which represents a specific characteristic of the remote sensing image. However, one single-objective function may not provide satisfactory results because of the complexity of remote sensing images. In this paper, a multiobjective discrete particle swarm optimization algorithm (MODPSO) is utilized to tackle the problem of EE, where two objective functions, namely, volume maximization and root-mean-square error (RMSE) minimization are simultaneously optimized. The result set of Pareto-optimal solutions contains a number of non-dominated solutions, from which the user can judge relatively and pick up the most promising one according to the problem requirements. Experiments on two real hyperspectral images were conducted to evaluate the proposed MODPSO algorithm, which confirmed the effectiveness of the proposed algorithm. |
|---|---|
| AbstractList | Endmember extraction (EE) is one of the most important issues in hyperspectral mixture analysis, and it is also one of the most challenging tasks due to the intrinsic complexity of remote sensing images and the lack of priori knowledge. In recent years, a number of EE methods have been developed, and several different optimization objectives have been proposed from different perspectives. In all of these methods, there is only one objective function to be optimized, which represents a specific characteristic of the remote sensing image. However, one single-objective function may not provide satisfactory results because of the complexity of remote sensing images. In this paper, a multiobjective discrete particle swarm optimization algorithm (MODPSO) is utilized to tackle the problem of EE, where two objective functions, namely, volume maximization and root-mean-square error (RMSE) minimization are simultaneously optimized. The result set of Pareto-optimal solutions contains a number of non-dominated solutions, from which the user can judge relatively and pick up the most promising one according to the problem requirements. Experiments on two real hyperspectral images were conducted to evaluate the proposed MODPSO algorithm, which confirmed the effectiveness of the proposed algorithm. |
| Author | Bo Du Rong Liu Liangpei Zhang |
| Author_xml | – sequence: 1 surname: Rong Liu fullname: Rong Liu organization: State Key Lab. of Inf. Eng. in Surveying, Wuhan Univ., Wuhan, China – sequence: 2 surname: Bo Du fullname: Bo Du organization: Sch. of Comput., Wuhan Univ., Wuhan, China – sequence: 3 surname: Liangpei Zhang fullname: Liangpei Zhang organization: State Key Lab. of Inf. Eng. in Surveying, Wuhan Univ., Wuhan, China |
| BookMark | eNotj91Kw0AUhFdRsK0-QW_yAonn7GZ3E7wqRWuhIli9LvtzVlPyxyaKfXsD9mqG4WOGmbOrtmuJsSVChgjl_XazetvvMw6oswK5RiUu2BwllJCXEvUlm3GUItUA4obNh-E4mYIDzNjDy3c9Vp09khurH0qo9Q01lmJCv2M0U9i1Sehi8nXqKQ79hEVTJ1VjPumWXQdTD3R31gX7eHp8Xz-nu9fNdr3apRVqOaZSYXBS8NwWxHkIygurvDa5l-SUyKW1WjnljdMQjPXWycLpwliRW6cAxYIt_3srIjr0cRqPp8P5qPgDx_RLSg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/IGARSS.2017.8127163 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISBN | 1509049517 9781509049516 |
| EISSN | 2153-7003 |
| EndPage | 1164 |
| ExternalDocumentID | 8127163 |
| Genre | orig-research |
| GroupedDBID | 29I 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-561fc5324b8e22ff6d3b6d7a4d5ec6345bb76c6dac70fabdbc58c78ab34bc6013 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426954601079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:38:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-561fc5324b8e22ff6d3b6d7a4d5ec6345bb76c6dac70fabdbc58c78ab34bc6013 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_8127163 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-July |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE International Geoscience and Remote Sensing Symposium proceedings |
| PublicationTitleAbbrev | IGARSS |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0038200 |
| Score | 1.6592768 |
| Snippet | Endmember extraction (EE) is one of the most important issues in hyperspectral mixture analysis, and it is also one of the most challenging tasks due to the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1161 |
| SubjectTerms | Complexity theory endmember extraction Hyperspectral imaging Hyperspectral remote sensing Linear programming multi-objective Optimization Particle swarm optimization |
| Title | Multiobjective endmember extraction for hyperspectral image |
| URI | https://ieeexplore.ieee.org/document/8127163 |
| WOSCitedRecordID | wos000426954601079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qUfDkoxXf7MGj2-42m8fiScRWL6VYhd5KnlixW1lbwX_vJLtWBC_eQkgYksB8M8l8-QAuSOYYowqTHJubOFM5iVXqy_4YdaQnlFTOBbEJPhyKySQfNeByzYWx1obiM9vxzfCWbxZ65a_KughGGN6TDdjgnFVcrW-vSxDJkvpXoTTJu_eD64fx2Jdu8U497Zd-SoCP_s7_DO9C-4eHF43WCLMHDVvsw9YgiPF-tuAqsGcX6qVyWpEtzNx6gY8IPW5ZMRYiDEqjZ0w2K05lKV-j2Rx9SBue-rePN3dxLYYQzxDhlzHGOU5TDH-UsL2ec8wQxQyXmaFWM5JRpTjTzEjNEyeVUZoKzYVUJFMasy5yAM1iUdhDiISUaSI1DhIiM5bmREiGmQ9JieRo4whafgumb9V_F9N69cd_d5_Att_lqoT1FJrLcmXPYFN_LGfv5Xk4pC_ovpUY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qVfTkoxXf7sGj2-5uHpvFk4h9YC3FVuit5IkVu5W1Ffz3ZrNrRfDiLYSEIQnMN5PMlw_gEmFDKRE2ydGJ8rFIkC_CvOyPEoMiJrgwxolNxP0-G4-TQQWuVlwYrbUrPtONvOne8tVcLvOrsqYFIxveozVYJxhHQcHW-va7yGJZUP4rFAZJs9u-eRwO8-KtuFFO_KWg4gCktfM_07tQ_2HieYMVxuxBRaf7sNl2cryfNbh2_Nm5eCnclqdTNdO5xIdnfW5WcBY8G5Z6zzbdLFiVGX_1pjPrRerw1Lob3Xb8Ug7Bn1qMX_g20jGS2ABIMB1FxlCFBFUxx4poSREmQsRUUsVlHBgulJCEyZhxgbCQNu9CB1BN56k-BI9xHgZc2kGMYaVJghinNvdBIeKxtXEEtXwLJm_FjxeTcvXHf3dfwFZn9NCb9Lr9-xPYzne8KGg9heoiW-oz2JAfi-l7du4O7AvZX5hf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Multiobjective+endmember+extraction+for+hyperspectral+image&rft.au=Rong+Liu&rft.au=Bo+Du&rft.au=Liangpei+Zhang&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=1161&rft.epage=1164&rft_id=info:doi/10.1109%2FIGARSS.2017.8127163&rft.externalDocID=8127163 |